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Abstract

The reference method for backfilling of deposition tunnels includes that pre-compacted backfill
blocks are filling up the main part of the volume. Bentonite pellets are filling up all gaps between
blocks and rock walls and are also used as a bed material to even out the rough rock surface and by
that provide a suitable surface on which the backfill blocks can be stacked. Inflowing water may
disturb the backfill installation process. Depending on flow rates and also on how the inflow points
are distributed in the deposition tunnel the inflowing water may affect the stability of the backfill
installation and it could also cause erosion of bentonite. The water inflow is thus of importance for
the safety of the repository and is therefore included in the Technical Design Requirements for both
SKB’s and Posiva’s repositories: “Inflow to deposition tunnel: Less than limit to be determined in
the design o allow installation of the backfill and plug.” (Posiva SKB 2017). The work presented in
this report gives input to the quantification of the requirement.

This report describes the work performed in order to handle inflowing water during the installation
of backfill in KBS-3V deposition tunnels. The project work was divided in the following parts:

1. To develop water handling methods.

2. To establish requirements on the characterization of deposition tunnels regarding water inflow
rates and how they are distributed.

3. To update the conceptual model describing water storage in a pellet filling as function of the
water inflow rate.

4. To develop a mathematical model describing water storage and spreading in pellet fillings during
backfill installation.

5. To design a temporary plug that can be used in case of a temporary stop in the backfill installa-
tion process.

Water handling methods

A number of water handling methods have been investigated and developed for a range of different
inflow rates:

»  Water storage in the pellet filling. Investigations have shown that inflowing water largely can
be stored in the macro voids between bentonite pellets in the pellet filled gap between backfill
blocks and rock. Water storing in the pellet filling is probably enough for the main part of the
deposition tunnels. This method is recommended for inflow rates per tunnel up to 0.5 liters/
minute.

*  Water distribution by geotextile. Geotextile pieces that are fastened on the rock wall over a water
bearing fracture zone can be used to distribute the inflowing water over a larger area and by that
increase the water storage capacity of the pellet filling. This method is recommended for inflow
rates per tunnel between 0.5 and 1.0 liters/minute.

» Temporary drainage. By connecting a pipe to the geotextile, via a special water collector, inflow-
ing water can be drained out from the inflow point, through the pellet filling. With this method,
several sections of backfill can be installed without being affected of the inflowing water. The
drainage pipe is retrieved after its usage. This method is recommended for inflow rates per tunnel
between 0.5 and 1.0 liters/minute. The method can only be used together with geotextile.

*  Water Storage Section, WSS. This method includes that a certain section of a deposition tunnel
is allocated for water storage. The section is delimited by two walls of concrete beams and the
space between the walls is filled with bentonite pellets. By using pellets with high initial degree
of saturation, the inflowing water can be stored in the macro voids between the pellets without
early swelling and sealing of the bentonite. The length of the WSS can be adjusted depending on
the inflow rate. This method is recommended for inflow rates per tunnel between 1 and 5 liters/
minute.

* Drainage borehole to Adjacent Tunnel, DAT. With a drainage borehole from a water bearing
fracture zone to an adjacent tunnel, high inflow rates can be handled. The inflowing water must
be collected in a special section and then led into the borehole. It is important that the drainage
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borehole afterwards can be sealed efficiently. This method is recommended for inflow rates per
tunnel between 1 and 10 liters/minute.

» Artificially wetted pellet wall. By adding water on the installed pellets it is possible to build up a
wet pellet wall that redirects flowing water and thus prevents it from reaching the backfill front.
This method has been tested in laboratory scale but it has been assessed that further tests will be
needed before it is ready for implementation in full scale tests.

* Local freezing. The method to locally freeze water bearing fracture zone areas has in this project
been investigated by having a small workshop with experts in the field. The method has been
judged to have large potential but further investigations and tests will be needed before it is ready
for implementation in full scale tests.

Besides the methods described above, a number of different methods that have been suggested in
earlier projects, were reviewed and rejected depending on either technical difficulties or problems
with the post closure safety.

Requirements on water inflow data

Besides the specific inflow from individual inflow points or fracture zones, also the total inflow rate
and distribution in a deposition tunnel must be considered when planning the backfill installation
process for a specific tunnel. Requirements regarding characterization of water inflows to the
constructed deposition tunnels have been suggested. The requirements are based on results from
several investigations and tests performed regarding e.g. water storage capacity of a pellet filling and
studying the effects of distributing the inflowing water by geotextile materials. Based on the actual
inflow conditions of each tunnel, it will be possible to choose the proper water handling methods and
make a specific plan for the needed water handling procedures and backfill installation process for
every individual deposition tunnel.

Requirements on pellet properties

The results from the tests have shown that it will be necessary to put up requirements regarding the
pellet properties regarding water content and density. When manufacturing pellets with the extrusion
method (the pellet type used in this project) it is important to have an optimal water content of the
raw bentonite. If the water content is too high, it will be impossible to reach the high densities that
are necessary in order to achieve the pellet properties needed. In earlier performed test with Asha and
Cebogel pellets, where the water storage properties have been assessed to be high, the water content
have been between 12 and 20 % and the dry density of the individual pellets has been between
1810-2000 kg/m’ (see e.g. Dixon et al. 2008a, b and Andersson and Sandén 2012). These figures
should serve as a guideline for the requirements on the pellet properties.

Update of conceptual model

For the calculations of available time before inflowing water to a pure pellet filling reaches the
backfill front face, a simplified conceptual model is suggested to be used. The model is based on
experimental data from a large number of different laboratory tests. Different wetting patterns
were identified for different ranges of inflow rates and these patterns have been used to define a
conceptual model.

Mathematical model

The objective of the mathematical model was to calculate the available time windows for specific
deposition tunnels and for specific water inflow scenarios, and to analyze if there is a risk that
inflowing water can catch up with the backfill front. The water transport was represented as
progressing water fronts from multiple water inlets in a tunnel, for essentially any combination of
inlet positions and flow rates. The partial water-filling of the pellets-filled sections was represented
with a flow rate dependent function, which was adopted from the large scale test results. The model
was intentionally given a general definition which could enable an evaluation of features which are
specific for SKB and Posiva, respectively, such as tunnel section area and backfilling rate.
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Sammanfattning

I referensmetoden for aterfyllning av deponeringstunnlar ingér att forkompakterade aterfyllningsblock
fyller upp huvuddelen av volymen. Bentonitpellets fyller upp alla spalter mellan block och berg
och anvinds dven som ett biddmaterial for att jimna ut den ojdmna bergytan och skapa ett jimnt
underlag pa vilket aterfyllningsblocken kan staplas. Inflodande vatten fran berget kan komma att stora
aterfyllnadsprocessen. Beroende pa inflodeshastighet och pé hur inflédespunkterna ér fordelade i
deponeringstunnlarna kan det inflédande vattnet paverka stabiliteten hos blockstapeln och dven leda
till erosion av bentonit. Vatteninflodet till en deponeringstunnel har alltsé betydelse for sdkerheten i
slutférvaret och inkluderas darfor i konstruktionsforutséttningarna for bade SKB’s och Posivas slut-
forvarsanldggningar: Inflode till deponeringstunnel: “Mindre dn gréns som sétts under utformningen
for att tillata installation av dterfylining och plugg” (forfattarens dversittning) (Posiva SKB 2017).
Arbetet som presenteras i denna rapport ger forutsittningar for att kvantifiera inflodeskravet.

Denna rapport beskriver det arbete som utforts for att kunna hantera inflodande vatten i samband med
aterfyllningen av deponeringstunnlar i KBS-3V konceptet. Projektarbetet kan delas upp i foljande delar:

1. Utveckling av olika vattenhanteringstekniker.

2. Etablera krav pa karakteriseringen av deponeringstunnlar nér det géller storleken pé vatteninfloden
och hur de dr fordelade i deponeringstunnlarna.

3. Uppdatera den konceptuella modellen som beskriver hur vatten lagras i en pelletsfyllning som en
funktion av inflédeshastigheten.

4. Utveckla en matematisk modell som beskriver hur vatten lagras och sprids i en pelletsfyllning i
samband med installation av aterfyllning.

5. Design av en temporar plugg som &r tankt att anvandas vid ett tillfalligt stopp i
installationsprocessen.

Vattenhanteringsmetoder

Ett antal olika metoder att hantera inflddande vatten har undersokts och utvecklats. Metoderna ar
anpassade for olika inflodeshastigheter:

* Jattenlagring i pelletsfyllning. Undersokningar har visat att inflodande vatten i stor utstrickning
kan lagras i makroporerna mellan pelletar i de pelletsfyllda spalterna mellan aterfyllningsblocken
och bergvéggarna. Denna vattenlagring dr formodligen tillracklig for huvuddelen av deponerings-
tunnlarna. Denna metod rekommenderas for infléden upp till 0.5 liter/min per tunnel.

* Geotextil. Geotextil som fésts pa bergytan over vattenforande sprickzoner fordelar det inflodande
vattnet over en storre yta och kan darmed dka vattenlagringsformégan hos en pelletsfyllning.
Denna metod rekommenderas for infloden per tunnel mellan 0.5 och 1.0 liter/minut.

»  Temporir drinering. Genom att ansluta ett ror till geotextilen, via en speciell vattensamlare, kan det
inflédande vattnet dréneras ut frén inflédespunkten och genom pelletsfyllningen. Med denna metod kan
ett antal sektioner med aterfyllning installeras utan att paverkas av inflodande vatten. Dréneringsroret
maéste atertas efter anvéindandet. Denna metod rekommenderas for infloden per tunnel mellan 0.5 och
1.0 liter/minut. Temporéar drénering kan endast anvéndas tillsammans med geotextil.

* Vattenlagringssektion, WSS. Denna metod innebir att en bestdmd sektion av deponeringstunneln
avdelas for vattenlagring. Sektionen begrénsas av tva betongviggar och volymen mellan dessa
fylls med bentonitpellets. Genom att anvénda pellets med hog vattenmaéttnadsgrad kan det
inflédande vattnet initialt lagras i porutrymmet mellan pelletarna utan att bentoniten tidigt borjar
svilla och tita. Langden pd en WSS kan justeras beroende pd inflodeshastigheten. Denna metod
rekommenderas for infléden per tunnel mellan 1 och 5 liter/minut.

* Drdnerande borrhdl till angrdnsande tunnel, DAT. Med ett drénerande borrhél frén en vatten-
forande sprickzon till en angransande tunnel kan stora vatteninfléden hanteras. Det inflddande
vattnet maste samlas i en speciell sektion och sedan ledas vidare in 1 borrhalet. Det &r viktigt att det
drénerande borrhalet efter anvindning kan forslutas effektivt. Denna metod rekommenderas for
infléden per tunnel mellan 1 och 10 liter/minut.
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» Artificiell bevitning av pelletsvigg. Genom att bevita den installerade pelletsen pa ytan kan
man bygga en viagg som dirigerar om vattenfléden som kommer inifran fyllningen och ddrmed
forhindrar vattnet att na aterfyllningsfronten. Denna metod har testats i laboratorieskala men det
har bedomts att fler tester behdvs innan den ar redo for att testas i full skala.

* Lokal frysning. Metoden att med hjilp av lokal frysning av en vattenférande sprickzon stoppa
vatteninfloden under installationstiden har i detta projekt endast undersokts genom att en mindre
workshop med experter pa omradet har genomforts. Metoden har bedomts ha stor potential men
ytterligare undersokningar krivs innan den ar redo for tester i full skala.

Forutom de metoder som beskrivits ovan fanns det ett antal andra metoder som foreslagits inom
tidigare projekt men som efter en genomgang férkastades beroende pa bl.a. tekniska svarigheter
eller problem med sékerheten efter forslutning.

Krav pa inflodesdata

Forutom det specifika inflodet fran en sprickzon méste ocksé hinsyn tas till det totala inflodet

till en deponeringstunnel, samt hur det ar férdelat, nir man planerar hur aterfyllningen av en
deponeringstunnel skall ske. Krav pa hur karakteriseringen av en deponeringstunnel skall ske nir
det géller vatteninfloden har foreslagits. Kraven baserar sig pa resultaten fran de undersékningar
och tester som gjorts pa t.ex. vattenlagringskapaciteten hos en pelletfyllning och hur den paverkas
om man kompletterar med att anvinda geotextil for att fordela vatteninflodet. Med hjilp av den
erhéllna inflodesdatan kan man sedan vélja vattenhanteringsmetod och dven upprétta en plan for
aterfyllningsprocessen for varje enskild deponeringstunnel.

Krav pa pelletfyliningens egenskaper

Resultaten fran testerna visar att det dr nddvéndigt att stilla krav pa pelletsen nér det giller
vattenkvot och densitet. Nar man tillverkar pellets genom extrudering (den pellettyp som anvénts

1 detta projekt) dr det viktigt att ha en optimal vattenkvot pa rdbentoniten. Om vatteninnehallet &r

for hogt blir det omgjligt att na den hoga densitet pa pelletsen som édr nédvéndig for att man ska fa
de egenskaper som krévs. I tidigare genomforda tester med Asha- och Cebogel-pellets, dér vatten-
lagringsegenskaperna har bedomts vara hoga, har vattenkvoten legat pa mellan 12 och 20 % och
torrdensiteten pa de individuella pelletsen mellan 18102000 kg/m’ (se t.ex. Dixon et al. 2008a, b
samt Andersson och Sandén 2012). Dessa varden for vattenkvot bor tjina som en riktlinje for kraven
pa pelletfyllningens egenskaper.

Uppdatering av den konceptuella modellen

For att kunna berdkna den tillgdngliga tiden innan inflddande vatten i den rena pelletfyllningen
nér dterfyllningsfronten har en forenklad konceptuell modell foreslagits. Modellen dr baserad pa
experimentell data frén ett stort antal tester i laboratorieskala.

Olika bevitningsmonster har kunnat identifieras for olika vatteninfléde och dessa monster har sedan
anvants for att definiera en konceptuell modell.

Matematisk modell

Syftet med den matematiska modellen har varit att kunna berdkna den tillgéngliga tiden for en
specifik deponeringstunnel med specifika infloden och att kunna analysera om det finns en risk

for att det inflodande vattnet kommer att hinna ikapp éterfyllningsfronten. Vattentransporten i
pelletfyllningen har representerats av framétskridande vattenfronter fran ett antal inflodespunkter

i en deponeringstunnel, for i princip alla kombinationer av inflédespositioner och flodeshastigheter.
For en partiell vattenuppfyllning av pelletfyllda sektioner har en funktion som &r beroende av inflo-
deshastigheten anvénts. Denna funktion har tagits fram med hjilp av de resultat som erhallits fran
storskaliga forsok. Modellen har avsiktligt getts en allmént hallen definition vilket gor det mojligt
att utvardera egenskaper som ér specifika for bade SKB och Posiva som t.ex. olika tvédrsnittsareor
pa deponeringstunnlarna samt olika hastighet pa installationen av aterfyllning.
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Tiivistelma

Suurin osa loppusijoitustunneleiden tilavuudesta on suunnitelman mukaisessa ratkaisussa esitetty
taytettdviaksi esipuristetuilla tdyteainelohkoilla. Tayteainelohkojen ja kalliopintojen viliset raot
puolestaan tdytetddn bentoniittipelletteilld, joilla my0s tasoitetaan lattian epétasainen kalliopinta
sopivaksi tayttdlohkojen asennusta varten. Tadma tayttoprosessi voi héiriintya kalliosta tulevien
vuotovesien johdosta. Vuotovedet voivat vaikuttaa tiyteainelohkojen asennuksen stabiilisuuteen
sekd aiheuttaa tdyttomateriaalien eroosiota. Mahdollisten héirididen suuruus riippuu vuotovesien
virtausnopeuksista sekd vuotopaikkojen sijainneista tunnelissa. Vuotovedet vaikuttavat merkittavasti
loppusijoitustilan turvalliseen toimintaan ja ne on huomioitu sekd SKB:n ettd Posivan teknisissé
vaatimuksissa seuraavalla maérittelylla: ”Loppusijoitustunnelin vuotovesien mddrd: Vihemmdn kuin
suunnitelmissa méadritettavat sallitut raja-arvot tdyton ja tulpan asennuksille.” (Posiva SKB 2017).
Téssd raportissa esitetddn aineistoa timén vaatimuksen maérittdmiseen.

Téssd raportissa kuvataan KBS-3V konseptin mukaisen tdyton asennuksen nidkokulmasta vuotove-
sienhallintaan liittyva ty6td. Tdmai ty oli jaettu seuraaviin osiin:

1. Vuotovesienhallintamenelmien kehittiminen.

2. Vaatimusten médrittdminen loppusijoitustunnelien karakterisoinnille vuotovesien virtausten ja
sijaintipaikkojen suhteen.

3. Pellettitdyton veden varastointia virtausmiéran suhteen kuvaavan konseptuaalisen mallin péivitys

4. Tayttoprosessin aikana tapahtuvan veden varastoinnin ja kulkeutumisen matemaattisen mallin
kehitys.

5. Téayttdprosessin édkillisen pysdhtymisen johdosta tarvittavan viliaikaisen tulpan suunnittelu.

Vesienhallintamenetelmét
Ty0ssd tutkittiin ja kehitettiin eri vuotovesien virtausmédrdalueille sopivia vesienhallintamenetelmié:

» Vuotovesien varastointi pellettitdyttéon. Téyteainelohkojen ja kallion véliin asennettu bentoniit-
tipellettitdytto pystyy varastoimaan suurimman osan vuotovesistd pellettien vélisiin tyhjatiloihin.
Tama pellettitiyton ominaisuus on luultavasti riittdva vesienhallintamielessd suurimmalle osalle
loppusijoitustunneleita aina 0.5 litraa/minuutti tapahtuvaan tunnelin kokonaisvuotoon asti.

*  Vuotovesien levittdminen geotekstiilin avulla. Vuotokohdan péélle kallioseindén kiinnitetyilla
geotekstiileilld vuotovesien virtaus voidaan ohjata suuremmalle alueelle ja kasvattaa ndin
pellettitdyton veden varastointikapasiteettia. T4td menetelméd suositellaan kéytettdviksi tunnelin
kokonaisvuotovesien 0.5—1.0 litraa/minuutti virtausnopeusalueille.

» Viliaikainen virtausputki. Vettd voidaan johtaa pellettitdyton ldpi kayttdmélld geotekstiiliin
kiinnitettyd vedenkerdinté ja véliaikaista virtausputkea. Tdmé menetelméd mahdollistaa pidempié
tidyton asennuskatkoja ilman vuotovesien aiheuttamia héirioitd. Véliaikainen virtausputki
poistetaan pellettitdytostd kayton jalkeen, vedenkerdimen ja geotekstiilin jdddessi paikoilleen.
Tatd menetelméd suositellaan kiytettdviksi tunnelin kokonaisvuotovesien 0.5—1.0 litraa/minuutti
virtausnopeusalueille. Viliaikaista virtausputkea ei voida kéyttid ilman geotekstiilejé.

» Vedenkerdysalue. Tdssd menetelméssé pitkittdinen osa loppusijoitustunnelia rajataan erityiseksi
vedenkerdysalueeksi betoniseinien avulla. Seinien véliin ja4va alue tiytetddn korkean ldhtosatu-
raatioarvon omaavilla bentoniittipelleteilld. Téllaiset pelletit paisuvat ja tiivistdvét hitaammin
pellettien véliset tyhjétilat, jolloin saavutetaan tasaisempi kastuminen ja suurempi vedenvaras-
tointikyky. Vedenkerdysalueen pituus médritetddn vuotovesien virtausnopeusalueiden mukaisesti.
Tétd menetelmai suositellaan kaytettédviksi tunnelin kokonaisvuotovesien 1.0-5.0 litraa/minuutti
virtausnopeusalueille.
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» Viereiseen tunneliin ohjattu virtaus. Erittdin korkeiden vuotovesiméérien tapauksessa kahden
vierekkdisen tunnelin véliin voidaan porata tilat yhdistiva reiké, johon vuotokohdan vedet
ohjataan. Vuotokohtaan rakennetaan erityinen kerdysalue, joka kokoaa vuotovedet ennen reikdin
viemistd. Pitkdaikaisturvallisuuden kannalta on tiarkedé pystyad tukkimaan tunneleiden vélinen
yhdysreiké pysyvésti. Tdtd menetelmdd suositellaan kéytettdviksi tunnelin kokonaisvuotovesien
1.0-10.0 litraa/minuutti virtausnopeusalueille.

» Esikasteltu pellettiseind. Pellettitdyton asennuksen yhteydesséd voidaan tietty osa pelleteistd
esikastella, jolloin ne muodostavat tiiviin seinén. TAma seiné estdd ja ohjaa vuotovesid pois
asennusrintama-alueelta. T4td menetelméaa on testattu laboratorio-olosuhteissa, mutta menetelma
tarvitsee vield lisékehitystd ennen tdyden mittakaavan kokeita.

*  Vuotovesien hallinta jdddyttdmdlld. Vuotovesid voidaan hallita jaddyttdmalla vuotokoh-
dat paikallisesti. Tatd menetelmad kisiteltiin tissd tydssi jirjestdméllé pieni tyOpaja alan
asiantuntijoiden kesken. Tdmén menetelmén soveltamisella todettiin hyvid mahdollisuuksia
vuotovesienhallintaan, mutta ennen tdyden mittakaavan soveltamista tdytyy tehdi lisdtutkimuksia
ja laboratoriotesteja.

Y114 kuvattujen menetelmien liséksi, myds joukko aikaisemmissa projekteissa tunnistettuja
vesienhallintamenetelmid arvioitiin ja rajattiin timén tyon ulkopuolelle. Syini olivat joko tekniset
keskenerdisyydet tai pitkdaikaisturvallisuuteen liittyvét ongelmat.

Vuotovesimééritysten vaatimukset

Loppusijoitustunnelin tdyttoprosessia suunniteltaessa tulee tietdé yksittdisten virtauspisteiden tai
halkeama-alueiden lisdksi tunneliin vuotava kokonaisvesimiiré ja sen paikkajakauma. Tassd ty0ossé
on esitetty vuotovesienmaédritysten vaatimuksia. Namé vaatimukset perustuvat kokeelliseen toimin-
taan, kuten esimerkiksi veden varastointikapasiteetin miaérityksessa tehtyihin laboratoriokokeisiin
sekd vuotovesien geotekstiililld levittdmisen tutkimiseen. Kun yksittiisen loppusijoitustunnelin
vuotovedet on kartoitettu, voidaan sille tehda tarvittaessa erityinen vesiehallintasuunnitelma, joka
my0s huomioi tdyton asennuksen vaatimukset tille tunnelille.

Pellettien ominaisuuksien vaatimukset

Kokeellinen toiminta on osoittanut, ettd on tarpeen maérittda kaytettdvien pellettien ominaisuudet
vesiméadrin ja tiheyden suhteen. Nama tulee ottaa huomioon jo pellettien valmistuksen aikana (tdssé
tyOssd kdytettiin pursottamalla valmistettuja pellettejd) raakamateriaalina toimivassa bentoniitissa.
Korkean vesipitoisuuden pelleteilla ei saavuteta loppusijoitustunnelin suunnitelman mukaisia
bentoniitin tiheysarvoja. Aikaisemmin Asha ja Cebogel -pelleteilld tehdyissé kokeissa, missi
vedenvarastointikyky oli todettu korkeaksi, pellettien vesipitoisuus oli vélilld 12-20 % ja kuivatiheys
vililld 1810-2000 kg/m’ (Dixon et al. 2008a, b, Andersson and Sandén 2012). Niiti arvoja voidaan
kayttdd ominaisuusvaatimusten suuntaviivoina.

Konseptuaalisen mallin péivitys

Tassd tyOssd esitetddn yksinkertainen péivitetty konseptuaalinen malli sen ajan maérittdmiseksi miké
vuotovesiltd kestdd saavuttaa asennuksen tdyttdrintama. Malli perustuu useiden laboratoriokokeiden
tuloksiin. Erilaisia vettymiskuvioita tunnistettiin joukolle virtausméérid ja néitéd tuloksia kdytettiin
konseptuaalisen mallin luomiseen.

Matemaattinen malli

Tédmén matemaattisen mallin tarkoituksena on laskea tdyton asennukseen liittyvid aikaikkunoita
loppusijoitustunnelin eri vuotovesiskenaarioille. Ndin voidaan analysoida sitd saavuttavatko
vuotovedet tdyton asennusrintaman. Vesien kulkeutuminen esitettiin etenevénd vesirintamana, joka
saa vetensd useista tunnelin vuotokohdista. Télla tavoin voidaan ottaa huomioon kaikki oletettavat
vuotovesien méadrit ja paikat. Pellettitdyton osittainen vettyminen esitettiin virtausméérén funktiona,
mika oli johdettu testituloksista. Malli luotiin tarkoituksella geneeriseksi, jolloin sitd voidaan kéyttia
molempien, SKB:n ja Posivan, tunnelipoikkileikkauksille ja tdyton asennusnopeuksille.
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1 Introduction

SKB and Posiva develop and test different designs of the KBS-3 concept for a final repository of
spent nuclear fuel. The work has been going on for several years in order to develop methods for
backfilling, sealing and closure of a future repository.

The reference design considered by both SKB and Posiva for backfilling tunnels includes emplace-
ment of pre-compacted blocks in the tunnel and bentonite pellets that fill up the space between the
blocks and the tunnel walls, Figure 1-1. Pellets will also be placed on the tunnel floor in order to
even out the rough rock surface and by that provide a suitable surface on which the backfill blocks
can be piled. The installation of such a backfill system includes technical solutions for automation
of block manufacturing, block transports, stacking of blocks, emplacement of pellets etc. The
deposition tunnels in the current reference design have an inclination upward, towards tunnel face,
to enable drainage of inflowing water away from the backfilling works as long as possible.

One of the main problems identified is how the water inflow to the tunnels should be handled during
backfill installation. Depending on flow rates and how the inflow points are distributed in the tunnels
the inflowing water may change the backfilling conditions e.g. the initial conditions of the material,
the time window available for installation and also the stability of the backfill installation. Flowing
water may also cause erosion of the backfill materials. The water inflow is thus of importance for
the safety of the repository and is therefore included in the Technical Design Requirements for both
SKB’s and Posiva’s repositories: “Inflow to deposition tunnel: Less than limit to be determined in
the design o allow installation of the backfill and plug.” (Posiva SKB 2017). The work presented in
this report gives input to the quantification of the requirement.

Both the Forsmark site in Sweden and the Olkiluoto site in Finland are assessed to be rather dry, but
preliminary modelling show that a number of the planned deposition tunnels will have inflow rates
of more than 5 liters per minute and in some tunnels the inflow can be more than 30 liters per minute
(Joyce et al. 2013, Hartley et al. 2010). It should, however, be emphasized that these figures are
based on modelling and that the real inflow situation will not be known until after construction of the
deposition tunnels. Since it is desirable that no deposition tunnels should be abandoned, it has been
necessary to develop methods and techniques to handle these expected water inflows.
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Figure 1-1. Schematic drawing showing the design for backfill considered by SKB. The given dimensions
apply to the nominal tunnel section, see also Chapter 2. The design for backfill considered by Posiva is
similar and the only differences are in principle the size of the deposition tunnels and the choice of raw
material used for blocks and pellets.
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Different water handling methods have earlier been investigated within the project “System design
of backfill” (Sandén and Borgesson 2014). This work has then continued within the present project
“Water handling during backfill installation”, KBP1011 (SKB) and K3-2210 (Posiva). This report
presents a compilation of the project results and the current state of knowledge regarding water
handling methods in a KBS 3V repository.
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2 Reference designs of backfill

2.1 General

The present reference methods for backfilling of deposition tunnels are similar for SKB and Posiva.
One of the main differences are the dimensions of the tunnels (Posiva has two different tunnel sizes,
both somewhat smaller than the SKB tunnel) and thereby are also the block stack sizes and the
installed pellet volumes are different. Another difference is the considered installation sequences.
SKB is planning to install bentonite buffer and canisters to all deposition holes over the whole
length of the deposition tunnel before starting the installation of backfill. Posiva is considering to
install buffer and canisters to one to four deposition holes first and thereafter install backfill above
this area before continuing the installation of buffer and canisters to the next one to four deposition
holes. This means that there will be a difference in the average backfill installation rate which in turn
will influence the risk of water reaching the backfill front during the backfill installation process. It
should, however, be mentioned that discussions regarding the most suitable installation sequence are
ongoing within both SKB and Posiva.

A description of the considered deposition tunnel dimensions is provided in this chapter.

22 SKB

A schematic drawing showing the dimensions of an SKB deposition tunnel is provided in Figure 2-1.
The drawing shows the nominal tunnel geometry. The accepted volume exceeding the nominal
(19.1 m?) is 0.30 X A ,ominat X Liasting round m’. The accepted largest cross section area exceeding

the nominal is 0.35 X A,omina M. Additional data regarding the tunnel geometry can be found in
SKB (2010a, b). These dimensions are important for the preparation and installation of different
water handling methods (see description in Chapter 5) even if more detailed measurements will be
necessary when the final positions have been decided.
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Figure 2-1. Schematic drawing of a deposition tunnel (SKB).
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2.3 Posiva

Posiva is at the moment considering two different sizes of the deposition tunnels (Keto et al. 2013).
The different lengths of the fuel elements from the different nuclear power plants results in different
lengths of the canisters, Figure 2-2. The Olkiluoto 1-3 tunnels have a nominal cross-section area of
14.1 m? and a maximum of 19.2 m®. The Loviisa 1-2 tunnels have a nominal cross-section area of
12.7 m? and a maximum of 17.5 m’.

According to the present plans 46 tunnels will be adopted for OL1-2, 48 tunnels for OL3 and
20 tunnels for Loviisa. The final decision regarding the design is, however, not yet taken.
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Figure 2-2. Schematic drawing of a deposition tunnel (Posiva).
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3 Water handling methods considered to be unfeasible

3.1 General

A number of methods have been suggested to have some potential to handle water inflow during
backfill installation. Some of these methods have, however, been considered to be unpractical and also
to have too vast technical challenges to be further investigated within this project. A few methods were
excluded because they possess severe risks considering post closure aspects. This chapter provides a
brief description of these methods and why they have been rejected.

3.2 Post-grouting

Pre-grouting of the rock mass has extensively been studied in a number of SKB and Posiva projects as
well as in civil engineering projects around the world. Silica SOL is planned to be used in the deposition
tunnels as pre-grouting material, in order to limit the water inflow.

Post grouting has so far been considered to be nearly impossible for excavated surfaces, unless exten-
sive use of concrete will be allowed. Based on the current level of knowledge and projected high cost
of the development, grouting has not been a further investigated within this project. Even if the method
would be improved it is not likely to solve the challenges caused by the inflows, just move the inflow to
a new location.

3.3 Copper dam

The method was suggested in 2011 in an internal memo by B+tech Oy on assignment from Posiva. The
design includes that a copper plate is positioned between the backfill blocks stacked in the tunnel. The
block filling degree is locally very high, possibly up to 95 %. The sealing properties would be provided by
the copper plate between the blocks. The method will require small installation tolerances and machin-
ing of the rock in order to install the copper plate. Besides that the method is questionable as a water
handling method, it is also judged that the installation of a copper dam would delay the installation process
significantly as well as raise the cost of the backfill (Koskinen 2017).

34 Backfill dam

The method is similar to the copper dam method but without copper. The method is based on the idea
that backfill blocks are installed in the deposition tunnel without any pellets in the gaps between blocks
and rock. The blocks should be installed with a tolerance to the rock with only a few millimeters which
means that the rock surface has to be wire sawed. The swelling bentonite will then seal the gap between
the blocks and the rock surface soon after installation.

The method would require machining of the blocks, mechanical grinding or wire sawing of the rock

as well as careful installation of the backfill blocks. Even if the bentonite dam is possible to be built, it
would require time and effort during the backfill installation process which would be delayed. Based on
the uncertainty of the functionality as well as high cost of the method, the method has not been further
developed within this project.

3.5 Drainage along tunnel

A method that earlier has been suggested, is to build a drainage line along the deposition tunnel. The
drainage line must, however, be retrieved after use in order not to function as a high permeable zone
after finishing the backfilling of the tunnel. One suggestion investigated was to use thin glass pipes
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that would break into parts depending on the swelling pressure that will occur after saturation of

the bentonite. The technique with drainage lines along the tunnels has been considered to be a risk
from a post closure safety point of view, both regarding a remaining permeable zone (if pipes of any
material are left) and also in case material, e.g. crushed glass, would be left in the tunnel.

3.6 Methods including gravel fillings
3.6.1 Water storage section (early design)

The method to build a special water storage section in a deposition tunnel where inflowing water

is stored in the voids in a gravel filling has been considered to have severe problems regarding

post closure issues. A large volume with free water is considered to largely facilitate future colloid
erosion. There is also an obvious risk of local bacteria growth. However, the design of the method
has been changed in the sense that the gravel filling has been exchanged to bentonite pellets, see
description in Section 5.4. The new design will result in a lower bentonite density locally, but if this
can be handled by e.g. introducing a transition zone (a section with a density gradient and where no
deposition holes are placed) on both sides of the water storage section, it is believed that the method
could be suitable to be used under some circumstances.

3.6.2 Drainage hole to adjacent tunnel (early design)

A water handling method suggested to be used for high inflow rates is to drill a drainage borehole
to an adjacent tunnel, see detailed description provided in Section 5.5. The originally suggestion for
design included a similar gravel filled section as described in Section 3.6.1. This design has, how-
ever, after criticism (same arguments as for a water storage section, see Section 3.6.1) been changed
so that the water collection is made in a smaller volume that is countersunk into the rock surface.

3.7 Light plug built of shotcrete

An alternative to the Light fortified concrete plug described in Section 5.8 was initially to construct

a pure shotcrete plug. During the development work it became clear that it also was necessary

to construct a concrete wall on which the first layers of the shotcrete could be applied. Since the
design became almost similar to the other version of a temporary plug, it was decided to instead use
shotcrete as an alternative to the steel reinforcement. Both plug designs are presented in Section 5.8.
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4 Choice of water handling method

4.1 General

As described in this report, see Section 5.1, a large number of tests performed with bentonite pellets
have shown that, largely, inflowing water from the rock can be stored in the macro voids between the
bentonite pellets in the pellet filled gap between backfill blocks and rock. This water storing delays

the water progression through the backfill and makes backfill installation more predictable. The water
storing in the pellet filling is probably enough for the main part of the tunnels but it will be necessary to
have other techniques and methods for tunnels with high inflow rates.

The groundwater flow at both Forsmark and Olkiluoto has been modelled, see e.g. Joyce et al. (2013)
and Hartley et al. (2010). The modelling has predicted that a number of the deposition tunnels will have
inflow rates, higher than is expected to be managed by water storage in the pellet filling only. Efforts
will be made only to excavate tunnels with low inflows, but it cannot be guaranteed beforehand that
some excavated tunnels will have higher flows than the limits set by water storage in the pellets. There
is a clear incentive to use as much of the available rock volume and not to abandon tunnels already
constructed. This means that it will be necessary to have a toolbox of different methods that can be used
in order to handle different water inflow rates to be able to install the backfill while maintaining the
requirements of the installed backfill. Such a toolbox has been developed, see descriptions in Chapter 5.

The wetting behaviour of the backfill pellet fill is highly dependent on the distribution of water inflow
points in the deposition tunnel. The inflow distribution is also the determining factor when it is decided
which water handling method(s) that will be used in order to secure a predictable backfill installation.
For these reasons, data about the water inflow distribution into each deposition tunnel is needed.

4.2 Requirements on inflow data

A suggestion for characterization of deposition tunnels regarding water inflow distribution before
starting the backfill installation process has been made, see Table 4-1. The specified figures given
regarding inflow rates are based on the capacity of the different water handling methods investigated, see
Chapter 5. For example, if the total inflow to a deposition tunnel is <1 I/min, it will be enough with water
storage in the pure pellet filling if there are no fractures with inflow rates larger than 0.25 1/min. In sections
were there are inflow rates >0.25 I/min, geotextile will be used to increase the water storage capacity.

Table 4-1. Suggested requirements on inflow data.

Applicable for: Suggested requirement on inflow data

All deposition tunnels The total water inflow into every deposition tunnel shall be determined
Tunnels with total inflow <0.5 L/min No further actions are needed.

Tunnels with total inflow between 0.5 and 1 L/min  Identify any fracture zones with inflow rates >0.5 L/min

Tunnels with total inflow >1 L/min Identify any fracture zones with inflow rates >0.25 L/min.

At present, there are no readily available characterization methods that can supply such detailed
information as is requested in Table 4-1. However, the requirements are judged as attainable by several
experts working in the SKB projects concerning rock characterization and tunnel production and in the
Aspd HRL. The requirements have also been reviewed by Posiva experts in hydrogeology.

The inflow rates in Table 4-1 do not have to be measured in real time. The inflow can be measured
during long periods of time and then calculated to an inflow rate of liters per minute. Still, it is judged
as challenging to measure inflows quantitatively, both for the total inflow to a tunnel and even more
so for individual structures. This might result in the need for further work regarding development of
methods for inflow measurements since reliable inflow data is crucial for a robust and reliable reposi-
tory operation.
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4.3 Planning of water handling

Table 4-2 shows roughly how decisions on water handling methods can be made based on how the
water inflow into one tunnel is distributed. A similar table was suggested in Sandén and Borgesson
(2014). However, based on the knowledge achieved within this project, an updated table is provided.
The suggested techniques are based on the fact that 6 meter tunnel is backfilled every 24 h and that the
tunnel must be backfilled continuously with this rate until reaching the position where the tunnel end
plug should be constructed.

Tests with bentonite pellets have been performed in different scales and they have shown that, largely,
the inflowing water can be stored in the macro voids between the bentonite pellets in the pellet filled
gap between backfill blocks and rock. This water storing delays the water progression through the
backfill and makes backfill installation more predictable. In an SKB deposition tunnel, in average
5.5 m’ pellets will be installed every meter. A porosity of approximately 45 % gives an available macro
void volume of 2.5 m’. In practice, only parts of this theoretical volume are used for water storage
since the bentonite swell and seal and thereby prevent flow in all directions. The water storage can,
however, be increased by using geotextile to distribute the inflow over a larger area. It is estimated
that with an inflow rate of 0.25 1/min it will take approx. 40 hours for the inflowing water to reach the
front after installation of a 6 meter long backfill section. If also using geotextile it will take 120 hours.
Corresponding figures for an inflow rate of 0.5 I/min are 20 hours and 60 hours respectively. The water
storing in the pellet filling is probably enough for the main part of the tunnels but it will be necessary
to have other techniques and methods for tunnels with high inflow rates. The developed water handling
methods are described in Chapter 5.

In addition to the water handling methods, a mathematical model has been developed with the objective
to calculate the available time for specific deposition tunnels and for specific water inflow scenarios,
and to analyze if there is a risk that inflowing water can catch up with the backfill front. The mathe-
matical model is assessed to be an important tool when planning the backfill installation process for

a specific tunnel and which water handling methods that should be used. The mathematical model is
described in Chapter 6.

When making a plan for the water handling and backfill installation process for an individual deposition
tunnel, it is recommended to have margins regarding the calculated time before water will reach the
backfill front.

Table 4-2. Table showing how tunnels with certain water inflow conditions can be handled with
the different suggested water handling methods.

Water inflow to 300 m | Approximate inflow in one Water handling method
tunnel (L/min) water bearing fracture zone
(L/min)
<0.5 No water handling method is needed apart from backfilling
installation as planned.
0.5-1.0* <0.25 No water handling method is needed apart from backfilling
installation as planned.
0.25-1.0 Geotextile as a water distributor is needed.
1.0-5.0* <0.25 No water handling method is needed apart from backfilling
installation as planned.
0.25-1.0 Geotextile as a water distributor is needed, probably also
methods with higher capacity.**
>1.0 Water handling methods with high capacity** is needed.
>5.0 L/min* <0.25 No water handling method is needed apart from backfilling
installation as planned.
0.25-1.0 Geotextile as a water distributor is needed, probably also
methods with higher capacity.**
>1.0 Water handling methods with high capacity** is needed.

* NB: For tunnels where the total inflow is around 1 L/min and above a thorough evaluation of the tunnel is needed
concerning water handling during backfilling for that specific tunnel. Such evaluation must include where the water bearing
structures are located, the inflow from each structure and the distance between them.

** Water handling methods with high capacity have been developed in this project. The methods comprise for example a water
storage section (1-5 I/min) and a drainage hole to a neighboring tunnel (>5 I/min), see descriptions in Section 5.4 and 5.5.
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The following concluding remarks on planning of water handling are valid for a deposition tunnel
ready for backfilling, i.e. after any grouting activities. The water inflow measurements and distribu-
tion are expected to vary with seasons and the excavation and grouting of new tunnels. Hence the
inflow measurements should be made as close to the start of the backfilling installation as possible.

» Information about the water bearing fractures must be available, including the inflow rates and the
positions in the tunnel. All fracture zones with an inflow >1 L/min must be handled with care.

» After having received all inflow data, a plan for the backfill installation of a specific deposition
tunnel can be made. The position of any geotextiles on the rock wall or installation/preparation
for other water handling methods should be made before starting the backfill process. Also,
the installation of geotextile needs to be taken into account before installing permanent rock
reinforcement.

» For tunnels that includes fracture zones with an inflow of more than 0.5 L/min, the inflow must
be distributed over a large area to achieve a robust and reliable backfill installation. A method
that has been shown to work well is to place geotextile directly over the water bearing fracture.
Such simple methods are also needed in many cases where the total inflow to an entire deposition
tunnel is larger than 1.0 L/min (except where the individual inflow rates are small, less than
0.25 1/min).

» For individual fracture zones with inflow rates over 1.0 L/min it is necessary to apply water
handling methods with high capacity, i.e. inflow distribution using for example geotextile is not
sufficient, see Chapter 5.

+ For tunnels with a total inflow of over 5.0 L/min it is necessary to apply water handling methods
with high capacity (except where the individual inflow rates are small, less than 0.25 L/min), see
Chapter 5.
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5 Method development

5.1  Water storage in a pellet filling
5.1.1 General

In different tests it has been observed that a bentonite pellet filling has a good ability to store water
flowing into the deposition tunnel from the rock, see e.g. Dixon et al. (2008a, b) and Andersson

and Sandén (2012). It has also been assessed that this ability probably is enough in order to avoid
problems with inflowing water reaching the backfill front for the main part of the tunnels in a future
repository at Forsmark and Olkiluoto (Sandén and Borgesson 2014).

In order to further increase the understanding regarding the water storage capacity of a pellet filling,
the following tests and investigations have been made within the project Water handling during
backfill installation:

1. Laboratory tests in order to investigate how fines present in a pellet filling influences the water
storage properties (Sandén and Jensen 2016).

2. Large scale steel tunnel tests have been performed at Aspd HRL. The main objective with these
tests was to investigate if geotextile could be used to distribute inflowing water and thereby
increase the water storage capacity of the pellet filling but the results were also used to increase
the understanding regarding water storage capacity in general. The results from these tests are
presented in a report (Sandén 2016), but a compilation of the results are also provided in this
chapter.

3. Areview of results from relevant tests regarding water storing capacity in pellet fillings
performed by SKB and Posiva have been performed. The review has included results from both
tests performed in earlier projects but also from the new tests performed within this project.

The results have been used to update the conceptual model describing how water is stored in

a pellet filling depending on the water inflow rate and the pellet properties. Results regarding
how different water inflow rates affect the wetting pattern and the water storing capacity has also
been evaluated. This data has also been used to develop a mathematical model describing water
storage and spreading in a pellet filling, see Chapter 6 in this report and Akesson et al. (2017).

4. As aresult, from the work, it has also been possible to suggest requirements for the pellet proper-
ties regarding water content and density of the individual pellets in order to optimize the water
storage capacity of a bentonite pellet filling (Sandén and Jensen 2016).

5.1.2 Definition of water storage capacity

The water storage capacity of a pellet filling is defined as the amount of water that is stored in a
pellet filling without the occurrence of a channel flow. The water is often stored according to a
certain pattern e.g. symmetrical around the inflow point. The water storage pattern is depending on
the water inflow rate and the pellet properties. The water inflow fills the voids between the pellets
and the individual pellets also take up water and swell. The swelling closes temporarily the flow
paths in one direction, an inflow resistance is generated, and the water starts to flow in another
direction. The flow resistance in a pellet filling is, however, rather low and local piping (in small
scale) occurs during the water storage.

5.1.3 Theoretical water storage capacity of the pellet fillings (SKB and Posiva)

Schematic drawings showing the present reference designs for backfilling of deposition tunnels con-
sidered by SKB and Posiva are provided in Figure 2-1 and Figure 2-2 respectively. Bentonite pellets
are placed on the tunnel floor to even out the rough surface. Backfill blocks are then piled on the
pellet bed, filling up the main part of the deposition tunnel. After installation of a certain length of
blocks, pellets will be blown in to fill up the gap between the blocks and the rock walls. Immediately
after installation of pellets on the floor, water will start to flow into the macro voids of the filling.

As soon as the first pellets are installed in the gap between rock walls and block stack, the inflowing
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water from the rock will start to fill up the macro voids in this pellet filling. The inflowing water will
largely be stored in the pellet filling. The water storing capacity depends on the water inflow rate, the
pellet quality and the total available pellet volume. The position of the water front in the pellet filling
will change continuously and water from different inflow points will over time interact with each
other. Besides knowledge regarding the water storage capacity of the pellet filling, the rate of the
backfill installation process is a very important factor in order to calculate the position of the water
front in relation to the backfill front.

A compilation of data regarding thickness of pellet layers at floor, walls and ceiling for the different
tunnel types is provided in Table 5-1. The estimated total pellet volume per meter deposition tunnel
is also given in the table. Minimum refers to the nominal cross section area (since under-break is
not allowed) and maximum refers to the largest allowable cross section area. In the calculations
regarding water storing capacity that has been made, see Akesson et al. (2017), the average thickness
of the pellet gaps has been used. The thickness of the pellet gaps will of course, in the real case, vary
along the deposition tunnels and this variation may locally influence the water storage capacity. In a
pellet filling there are about 45 % macro voids i.e. the theoretical available volume for water storage
is approximately 2.3 m* /m tunnel (SKB). Corresponding figures for Posiva are 1.3 m® (Olkiluoto)
and 1.2 m* (Loviisa).

The figures regarding SKB provided in Table 5-1 are based on data regarding nominal tunnel area
and the maximum allowed over-break exceeding the nominal (30 %), taken from SKB (2010a, b).
The data regarding the dimensions of the block stack are taken from Arvidsson et al. (2015) where
an updated backfill reference design is suggested. With these data, and assuming that the over-break
of rock is symmetrically distributed around the nominal cross-section, the dimensions of the gaps
between block stack and rock walls have been calculated.

The figures regarding Posiva provided in Table 5-1 are based on data taken from Keto et al. (2013),
see e.g. Section 2.3.3, Figure 3-8 and Table 3-5 in the report. This means that the shown thickness
of the filling in the floor is based on a mixture of sand and bentonite and not really valid for a pellet
filling so it will have to be updated at a later stage.

Table 5-1. Compilation of data regarding thickness of pellet layers and the total pellet volume in a
backfilled section.

SKB tunnel

Pellet filling data Min Max Average
Total pellet volume/m (average) —m?® 2.4 8.1 5.2
Thickness of layers

Floor mm 100 250 175
Walls mm 100 400 250
Ceiling (midpoint) mm 300 600 450
Posiva tunnel, Olkiluoto fuel

Pellet filling data Min Max Average
Total pellet volume/m (average) m? 1.3 4.6 2.9

Thickness of layers

Floor mm 150 550 350
Walls mm 100 400 250
Ceiling (midpoint) mm 290 590 440
Posiva tunnel, Loviisa fuel

Pellet filling data Min Max Average
Total pellet volume/m (average) m?® 1.0 4.1 2.6

Thickness of layers

Floor mm 150 550 350
Walls mm 100 400 250
Ceiling (midpoint) mm 220 520 370
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5.1.4 Influence of fine material
General

The influence of fine material, fines, in a pellet filling has been investigated earlier regarding erosion
properties (Sandén et al. 2008). In the project “System Design of Backfill” one of the sub-projects
aimed to optimize the pellet filling regarding both erosion properties and water storing capacity
(Andersson and Sandén 2012). In these tests it was observed that there was an influence of fines
present in the filling regarding sealing and water uptake of the pellet filling. During installation, the
fines ended up in layers within the pellet filling, which then prevented the wetting to continue in that
direction. Large scale tests were performed at Aspd HRL during 2012 in the steel tunnel test equip-
ment (Koskinen and Sandén 2014) aiming to investigate the water storing capacity of pellet fillings
and also if the storing could be improved by using geotextile to distribute the inflowing water over

a larger area. One of the tests was performed using sieved pellets i.e. all fines were removed before
installation. The results from this test suggested that the water storing capacity increased when no
fines were present.

In order to study how the presence of fines influence the water storage capacity of a pellet filling,
a new test series has been performed in different scales in a laboratory (Sandén and Jensen 2016).
Another objective with the new test series was to compare the water storage properties of pellets
manufactured by extrusion from Asha bentonite and the commercial Cebogel QSE pellets.

Small scale tube tests
Test description

Tube tests have been performed in another project earlier in order to determine the water storing
capacity for different pellet types (Andersson and Sandén 2012). The test equipment consists of a
Plexiglas tube (d=0.1 m, L=1.0 m) that during the test was oriented vertically. The total volume of
the tube was 7.85 liters. The pellet filling was held in place by perforated steel plates, mounted at
the tube ends, through which the flowing water could easily pass, Figure 5-1. A water inlet (point
inflow) was placed at the mid-height of the tube. During the tests time the water inflow rate and the
water pressure were registered at decided intervals. The pellet wetting, upwards and downwards
from the inflow point level, were documented by notes and photos during test duration.

The new tests series included three types of tests:
1. Tests with pure pellet fillings (sieved pellets).
2. Tests with different amounts of fines mixed with the pellets (5 or 10 %).

3. Tests where fines were placed in layers in the pellet filling, above and below the inflow point.

Example of results

The photo provided in Figure 5-1 shows an example of results. The photo shows three tests performed
with Asha pellets (to the left in the figure) and with different contents of fines in the pellet filling. The
three corresponding tests performed with Cebogel QSE pellets are shown to the right in the photo.
All six tests were performed with a constant water inflow rate of 0.1 L/min. The results from these
tests showed that the wetting behavior of the pellet filling was similar for all mixtures independent of
the content of fines.

In the tests where fines were positioned in layers, the influence of the wetting behavior was strong.
Fines in layers, randomly positioned in a pellet filling can be a disadvantage, locally preventing the
wetting process and decreasing the water storage capacity of the filling.

Large scale slot tests
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Test description

Besides the small scale tube tests, tests were also performed in larger scale using special designed
test equipment, Figure 5-2. The test equipment has been designed as a large slot made of Plexiglas.
The Plexiglas was supported by a steel frame. The test equipment has a length of 2 m, a height of

1 m and a width 0.25 m. This width is close to what is the expected dimension of the pellet filled gap
between rock and backfill blocks in a deposition tunnel.

Figure 5-1. Example of results from the tube tests. The photos shows tests performed with both Asha pellets
(three tubes to the left) and Cebogel QSE pellets (three tubes to the right). All six tests are performed with
the same inflow rate, 0.1 L/min, but with different amounts of fines mixed with the pellets (0, 5 and 10 %).
The wetting behavior was similar for all tests.

Figure 5-2. Photo showing the “Large slot test” equipment.
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The slot was filled with pellets and then a constant flow rate was applied at the midpoint of one side.
The water pressure and the water flow rate were continuously registered during the test duration and
photos were taken at decided intervals. The tests were stopped when water reached the top of the
slot. Tests were performed with both sieved pellets i.e. all fines were removed but also with fines
positioned in layers below and above the water inflow point. The layers were positioned at a distance
of about 15 cm below and above the inflow point. At test termination, samples were taken from the
pellets in order to determine the water content distribution. These values were then used to produce
contour plots showing the wetting pattern at the time for termination.

Example of results

Example of results are provided in Figure 5-3. The photos show the wetting patterns for the two
tests performed with Asha pellets and an inflow rate of 0.5 L/min. One of the test was performed
with sieved pellets and the other with fines positioned in layers within the filling. With an inflow
rate of 0.5 L/min and no fines present in the filling, the water initially flows downwards, but after a
certain time for the bentonite to swell and seal, the water front instead proceeds upwards. With the
same inflow rate, 0.5 L/min, and fines placed in two layers below and above the inflow point, the
lower layer stops the initial flow downwards and instead the water distributes sideways across the
fine layer. Finally sealing occurs and the water penetrates the upper layer whereas the same wetting
behavior takes place above this layer surface.

Figure 5-3. Photos showing the wetting pattern at time for termination. Upper: Test performed with Asha pellets,
inflow rate of 0.5 L/min and sieved pellets. Lower: Same as above but with fines placed in layers in the filling.
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Comments and recommendations

The investigations made regarding the influence of fines on the water storage capacity of a pellet
filling have resulted in a number of comments and recommendations:

» The presence of fines in a pellet filling depends on if it is present already in the delivered batch
or if it is created during installation. To be sure that one gets such a functional pellet filling as
possible, it is recommended that all pellets manufactured should be sieved before installation. It
is also recommended that the pellet installation equipment (blower, conveyor etc.), should be set
so that as little fines as possible are created during installation.

» A simple procedure for testing manufactured backfill pellets regarding water storage capacity
should be developed in order to ensure that the function of the pellet filling regarding this issue
will be fulfilled during installation. The test may advantageously be based on the tube tests
described in this chapter.

» The tests have shown that fines positioned as layers in a pellet filling temporarily will seal very
efficiently, within a pellet filling, when water reaches the layer and thereby prevent water from
flowing in that direction. This is a technique that could be used to direct the wetting in a certain
direction. It has e.g. been discussed to use wetted layers of pellets to prevent water flow but an
alternative could be to instead use layers of fines.

5.1.5 Steel tunnel tests
General

In this project, Water handling during backfill installation, five additional tests have been performed
in the steel tunnel test equipment (half scale test equipment simulating a part of a deposition tunnel).
The new tests were performed with the aim to investigate:

+ the water storing capacity of sieved pellets i.e. all fines were removed before installation,
* to test the new glass fiber geotextile,

* to determine the limits regarding which water inflow rate that can be handled with this technique.

Test description

The test tunnel is made of steel, Figure 5-4. The nominal cross section area of the tunnel is 7.1 m?
and the length is 6 m. The tunnel has a small inclination upward, towards tunnel face, to enable
drainage of inflowing water away from the backfilling front (same inclination as in full scale,
about 1 %. The usable length for the tests has been 4 m. The tunnel walls are not able to withstand
the full swelling pressure of a completely backfilled tunnel and therefore, instead of backfilling the
center of the tunnel, there is a wooden framework designed to deform and fail mechanically if the
swelling pressures becomes too high. Since the blocks are assessed to be of less importance for the
test results, this solution also saves time and money. The wooden frame is covered with a bentonite
geotextile mat to prevent movement of any water that has managed to penetrate both the pellet and
the block materials. Two different block stacking patterns have been used in the test series. The
reason for this was lack of backfill block of the same size. The dimensions of the pellet filled gaps
have, however, been almost the same. A difference from the full scale design is that there has not
been any floor layer with pellets in the tests. The reason for this has been that the inflow point has
been positioned on 1.5 meters from the floor and with the tested water inflow rates, the wetting has
proceeded symmetrically around the inflow point and upwards against the crown via the geotextile
i.e. a floor layer would not have been involved in the water storing.

The water used in the tests had 1 % salinity (TDS 10 g/1) by mixing 50/50 NaCl/CaCl,. This water
type corresponds well to the expected water at the time for installation (Forsmark and Olkiluoto).

26 Posiva SKB Report 05



Bentonite pellets

Wooden frame covered
with plastic sheet and
bentonite geotextile

Bentonite blocks

)

7

I
Geotextile, ‘
width = 500 mm ‘
Water inlet, 1.8 m ‘
from tunnel end \ I
I
° I
o
8 | S S 3
] ~N - ~N

‘ / =

o

I o

‘ -
I
]
I

[# 2]
300 1800 150
Geotextile
Test area
1800

.

4000

6 000

Figure 5-4. Schematic of the :-scale test tunnel. Upper: Cross-section showing the central mould of
wood, the block stack and the pellets. Lower: Steel tunnel from the long side showing the position of the
geotextile. The backfill front can be seen on the right side.

Geotextile quality
The geotextile used in the tests is manufactured of 100 % glass fiber i.e. there is no organic material,
see also Section 5.2.

The thickness of a geotextile sheet is about 1.2 mm and it has a weight of about 1 kg/m”. The func-
tion of the geotextile as a water distributor was despite being thin considered to be good, but could
probably be increased additionally if the geotextile e.g. is placed in double layers.
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Test matrix

In total five tests were performed in the last steel tunnel test series performed within this project, see
compilation in Table 5-2.

Table 5-2. Test matrix for the steel tunnel tests.

Test Pellet Flow rate Geotextile Comments

Test 1 Asha 0.25 No Reference test

Test 2 Asha 0.25 Yes Repeating 2012 test with glass fiber geotextile

Test 3 Asha 0.50 Yes Repeating 2012 test with glass fiber geotextile

Test 4 Asha 0.50 Yes Repetition of test 3, but performed using full scale backfill blocks.
Test 5 Asha 1.00 Yes Extreme case. Including equipment for temporary drainage.
Results

A compilation of the results from the five tests together with important test data and outcomes are
presented in Table 5-3.

Water pressure development

The required water pressure in order to keep the inflow rate at a constant level was regularly
registered in all tests, Figure 5-5. The maximum pressure varies between 170 kPa (Test 1) and up
to almost 250 kPa (Test 5). There is a trend in all five tests that the pressure increases somewhat with
time, but the variation in pressure during test time is large. The oscillating behavior depends prob-
ably partly on local piping within the pellet filling i.e. the pellets swell and seal and this is followed
by an increased water pressure that in turn leads to a local piping, but there is also an oscillation in
water pressure that depends on the pump strokes needed to keep up the set flow rate. At maximum
capacity the pump works with 160 strokes/minute. Since the pressure logging was made only every
ten minutes the data set is not sufficient to do a detailed analysis. In Test 2, Test 3 and Test 4, there
were very evident drops in pressure in conjunction with the water breakthroughs. During the test
time of Test 5, the pressure sensor stopped working after about 18 hours test time.
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Figure 5-5. Water pressure plotted versus time for all five tests performed in the steel tunnel.
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Water storage capacity data from the steel tunnel tests

The first test in this test series was a reference tests, performed with an inflow rate of 0.25 L/min
and without any geotextile installed. In this test 525 liters were stored before outflow occurred. The
second test was performed with the same inflow rate (was later adjusted to 0.2 L/min depending on
leakages from the steel tunnel) but with geotextile installed. In this test, the water storage increased
to 1955 L/min before breakthrough at the front.

Test 3 and Test 4 were both performed with an inflow rate of 0.5 L/min and with geotextiles mounted
on the “rock” walls. The rather early water breakthrough in Test 3, after 32 hours test duration, was
believed to partly depend on the low block quality (blocks manufactured with a mixture of 30 %
bentonite and 70 % crushed rock were used for this test). The observed leakage came through the
gaps between the blocks, see Sandén (2016) and therefore it was decided to repeat this test but
instead use backfill blocks manufactured of pure bentonite. In the earlier test series performed in the
steel tunnel, it was noticed that the blocks only have had a minor influence on the sealing and water
storage and this was originally the reason for exchanging the central parts of the block stack to a
wooden frame covered with geotextile and plastic, see Figure 5-4. However, it seems that the block
properties, after all, have a certain significance on the test setup. In Test 4 the water breakthrough
occurred after 38 hours test. During this time, 1140 liters of inflowing water were stored in the
pellet filling. The photo provided in Figure 5-6 shows the first water breakthrough and the photo in
Figure 5-7 shows the backfill front at time for termination.

The last test, Test 5, was performed with an inflow rate of 1 L/min and with geotextile mounted on the
“rock” wall. This test also included a function test of equipment for temporary drainage, see descrip-
tion in Section 5.3. The drainage phase did last for 43 hours and during this time approximately
2000-2250 liters were drained away. When the valves to the drainage pipes were closed, all inflow-
ing water was stored in the pellet filling. At this high inflow rate it took about seven hours before a
breakthrough occurred in the backfill front. During these seven hours, 420 liters were stored in the
pellet filling. In conjunction with the dismantling of the test, the roof was lifted away. Figure 5-9 and
Figure 5-10 shows the wetting pattern at the crown of the test length.

Water storage data from the performed tests are provided in Table 5-3. Figure 5-8 shows contour
plots of the wetting pattern seen on the surface closest to the developed walls and roof for all five
tests performed in the steel tunnel. The darker rectangular areas indicate the position of the geotextile
and the stars indicate the position of the inflow point. The white areas shows where no samples were
taken due to bentonite collapse (bentonite fell down on floor).

Erosion

In the original planning of the test series, it was decided to perform a rough estimation of the total
amount of bentonite eroded during test time, by collecting bentonite that had settled in the ditch in
front of the steel tunnel. The pump positioned in the ditch was placed in a box so that it was only
pumping clear water that was flowing over the walls of the box. However, the water that flowed
out from the tests and reached the ditch was seemingly clear and no separate measurement of the
bentonite content was made.

All five tests performed, ended with a collapse of bentonite, pellets and/or blocks, that fell down on
the floor in front of the backfill face. The amount of bentonite was roughly determined by weighing
(wet mass). The data from these measurements are provided in Table 5-3.
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Figure 5-6. Photo showing the first water breakthrough in Test 4.

Figure 5-7. Photo showing the backfill front of Test 4 at time for termination.
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Figure 5-8. Contour plots showing the wetting pattern seen on the surface closest to the developed walls
and roof for all five tests performed in the steel tunnel. The white boxes shows the areas where no samples
could be taken due to material loss after the breakthrough. The darker rectangular areas indicate the
position of the geotextile and the stars indicate the position of the inflow point.
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Figure 5-9. Photo showing the pellet ceiling after having removed the steel roof in Test 5.

Figure 5-10. Photo showing a cross section of the pellet filling at the top of the tunnel in Test 5. It is
obvious that the inflowing water has followed the geotextile up over the top and down on the other side of
the tunnel (inflow side to the left in the photo).
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Artificially wetted wall

In order to take advantage of the available test volume in the steel tunnel, the backfill installation

in all five tests has ended with an artificially wetted wall built of pellets. Water was added at the
nozzle during installation and this resulted in that the pellets were “glued” to each other. The amount
of water added has varied between 35 and 84 liters in the tests. The thickness of the wall has been
estimated to be 10-20 cm.

The building of artificially wetted pellet walls is considered as a separate water handling method and is
also investigated within this project. It is believed that when water flowing from the inside of a pellet
filling hits the wetted wall, which is much tighter than the dry pellet filling, the water flow will turn
and flow in another direction. It is judged that the wetted wall present in the steel tunnel test also have
influenced the results regarding water storage capacity. How great the impact has been is, however,
not clear since the wall was not supported by pellets from the outside, as it will be in the full scale.

Investigations regarding artificial wetting of pellet layers are still ongoing, see Section 5.6. The
results of the initial tests indicate that the technique can be used to delay early water breakthrough at
the backfill front but it is obvious that more tests are needed. The technique has been used in all steel
tunnel tests where the effect of geotextile has been investigated. It is therefore for the time being
recommended that geotextile and artificial wetting are used together i.e. when geotextile is installed
in a section also a wetted pellet wall should be built.

5.1.6 Compilation of results from tests performed within different projects
General

Tests have been performed in different scales and with different types of test equipment, during the
last ten years, with the main objective to investigate different processes that may occur during instal-
lation of backfill material in a deposition tunnel, such as erosion of bentonite and how inflowing
water is either stored or flowing in a pellet filled gap. The tests have mainly been performed using
bentonite pellets manufactured by extrusion, since this pellets type have been found to be superior
regarding water storing properties (Andersson and Sandén 2012). This chapter provides a compilation
of results from the tests. The presented test results originate both from old tests but also from new test
series performed to further increase the understanding especially regarding the issue how the presence
of fines affects the storing of inflowing water in a pellet filling, see test description in Section 5.1.4.

The following tests and investigations have been included in this compilation of results:
1. Concrete pipe tests. Tests performed in scale 1/12. The tests are reported in Dixon et al. (2008a).

2. Artificial slot tests. Tests have been performed in a number of different test series. The tests are
reported in Sandén et al. (2008), Andersson and Sandén (2012) and Sandén and Jensen (2016).

3. Steel tunnel tests. Tests performed in half scale. The tests are reported in Dixon et al. (2008b),
Koskinen and Sandén (2014) and in Sandén (2016).

4. Full scale test in TASS tunnel. This test is reported in Johnsson and Sandén (2013).

Only tests that are assessed to be of relevance for the water storing issue have been further investi-
gated and included in this report.

The results from the tests described in this report have clearly shown that inflowing water from the
rock surface largely will be stored in the pellet filling. An evaluation of the results has been made
regarding the following properties:

» Wetting pattern and water storage capacity. The wetting pattern for a point inflow as a function of
the inflow rate is important since it ultimately will determine how much water that can be stored
in the pellet filling before outflow occurs (when the water front reaches the backfill front). The
water storage capacity evaluated from the different test types depends on the design of the used
test equipment or scale of the performed tests, and the achieved data can be used in order to study
the behavior and to estimate the water storage capacity for the full scale.

» Geotextile. A number of tests have included geotextile to distribute the inflowing water over a
larger area and an obvious conclusion is that the water storing capacity increases with this method.
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Wetting pattern and water storage capacity

The water storing capacity of a backfill pellet filling is mainly depending on the pellet properties
and of the water inflow rate. Different water inflow rates results in different wetting pattern and the
time to first outflow will vary depending on how much water that is stored before the wetting front
reaches the backfill front. In the performed tests, the size and shape of the test equipment influences
the results, but it is assessed that the wetting pattern and its flow dependence can be studied in differ-
ent scales (see also Section 5.1.7, paragraph Scaling of test results to full scale conditions).

The photos provided in Figure 5-11 shows three examples of different wetting patterns;
“Symmetrical/Upwards wetting”, “Symmetrical wetting” and “Downwards wetting”. The photos
are taken from the tests performed at Clay Technology with the B+Tech type test equipment

described in Section 2.4.

An assessment of the resulting wetting pattern or wetting behavior has been done for all tests listed
in Chapter 2. The graph provided in Figure 5-12 shows the results from the assessments as a function
of the inflow rate. The wetting behavior has been divided into five different scenarios. As shown in
the graph, there is a large variation in results, but a number of clear trends can be identified:

» Upwards wetting. The wetting proceeds mainly upwards from the inflow point. This behavior
has mainly been seen in other pellets types (compacted pellets) when exposed for inflow rates
< 0.1 I/min (Sandén and Borgesson 2014).

* Symmetrical/Upwards wetting. The wetting proceeds as a combination of upwards from the
inflow point and symmetrically from the inflow point. The behavior has mainly been seen
when the pellet filling has been exposed for low and medium high inflow rates, approximately
0-0.25 I/min.

* Symmetrical wetting. The wetting proceeds almost symmetrically around the inflow point. The
behavior has mainly been seen when the pellet filling has been exposed for low and medium high
inflow rates, approximately 0-0.5 1/min.

+ Symmetrical/Downwards wetting. The wetting proceeds as a combination of downwards from
the inflow point and symmetrically from the inflow point. The behavior has mainly been seen
when the pellet filling has been exposed for low and medium high inflow rates, approximately
0.2-1.0 I/min.

» Downwards wetting. The wetting proceeds mainly downwards from the inflow point. The
behavior has mainly been seen in pellet fillings when exposed for inflow rates between
0.6—1.0 1/min or when pellets with very high water content have been used in the tests.

From the results in the graph provided in Figure 5-12, it seems that if the Asha pellets (red dots) are
more prone to symmetric/upwards wetting while the Cebogel pellets (green dots) are more prone to
symmetric/downwards wetting. The results from the steel tunnel tests performed with Cebogel pel-
lets (green squares) seems, however, to be more similar to the results achieved from the steel tunnel
tests performed with Asha pellets. This depends probably on the fact that the Cebogel pellets used in
these tests had lower water content, 16 %, and thus had a higher affinity to take up water, while the
Cebogel pellets used in the other tests have had a water content of 19-20 % (see also the suggested
requirements on pellets properties in Section 5.1.8). It seems thus that relatively small differences in
pellet properties can affect the wetting behavior of a pellet filling. There is probably also an influ-
ence of the different geometry of the different test types on the results.

The worst behavior from a water storage point of view, is if all inflowing water flows downwards in
the pellet filling and then along the floor out to the backfill front, see the lower photo in Figure 5-11.
The wetting behavior that should be pursued is a symmetrical wetting around the inflow point. With
this wetting pattern the amount of stored water in the pellet filling can be very large. The upwards
wetting only seems to occur at very low inflow rates which means that this will not anyway be a
problem to handle.
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Figure 5-11. Upper: Photo showing an example of “Symmetric/Upwards "wetting. Middle: Photo showing
an example of “Symmetric” wetting. Lower: Photo showing an example of “Downward” wetting.
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Figure 5-12. Graph showing the wetting pattern assessed from the results from the tests presented in
Chapter 2 plotted versus flow rates. The data points were spread in vertical direction for each category,
in order to improve the clarity of the graph.

The graph provided in Figure 5-13 shows the amount of water stored before outflow occurs plotted
versus different inflow rates for the different test types. For the individual test type (different colors)
it could be noted, in most cases, that the water storage capacity seems to decrease somewhat for the
higher inflow rates i.e. above 0.5 /min, but also in this graph, the spread in results is large. It should
be noted, when comparing the results from different test types with each other that the steel tunnel
tests and the single test in the TASS tunnel also included a wetted pellet wall, an effort that probably
have increased the water storing capacity, see also discussion in Section 5.1.5.

Influence of geotextile on the water storage behavior

The main idea by using geotextiles is to distribute inflowing water from the rock surface over a
larger pellet area and by that increase the water storage capacity and delay the water breakthrough at
the backfill front.

The influence of using geotextile to increase the water storage capacity of a pellet filling has mainly
been investigated in the steel tunnel test equipment. In addition, one full scale test was performed in
the TASS tunnel at Aspd where a geotextile stripe, with a width about 10 cm, was used to simulate a
water bearing fracture. The main objective with this test was not to test geotextile as a water distribu-
tor but the results are of course interesting also for this purpose.

An important difference between the test series is that the tests performed during 2008, included
two tests in each test setup i.e. the steel tunnel was divided in the middle and inflows were applied
on both sides. However, as mentioned earlier, no geotextile was used in these tests meaning that the
wetting from an inflow point in general only affected the side wall and in some tests also partly the
crown (Akesson et al. 2017, Appendixes 1-6). It has therefore been judged that these tests can be
used as reference tests in order to determine the effect of using geotextile.
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Figure 5-13. Graph showing the amount of water stored before outflow as a function of the inflow rate.
The results are presented for the different test types presented earlier in this chapter.

In order to study the effect of using geotextile to increase the water storage capacity, the results from
all steel tunnel tests regarding water storage capacity before the first outflow occur, are presented in
Figure 5-14 as a bar graph. The bars with a “G” on the top indicates that geotextile has been included
in the test setup. As shown in the graph, there is an obvious effect of using geotextile to increase the
water storage capacity. The effect seems, however, to vary a lot depending on flow rate and probably
also somewhat in a random manner:

» Inflow rate 0.25 I/min. Two tests were performed during 2008 (no geotextile) and in addition
two reference tests without geotextile were performed 2012 and 2015 respectively. The time to
first water breakthrough was 21 and 28 hours respectively for the two tests performed 2008. The
time to first breakthrough was 30 and 35 hours respectively for the tests performed 2012 and
2015. These figures should be compared with the times achieved when also using geotextile in
the test setup; 39.5 hours for the test from 2012 and 132 hours for the test from 2015. The varia-
tion in results have been large at these rather low inflow rates, especially the result from the test
that was performed 2012 (39.5 hours to first outflow) is assessed to be somewhat strange. One
explanation could be that the pellets in this test series were not sieved before use and this may
have influenced the results in a negative way (later tests, presented by Sandén and Jensen (2016),
have shown that fines have a tendency to end up in layers in the pellet filling during installation,
hindering the wetting process to continue past the layer.)

* Inflow rate 0.5 I/min. Two tests were performed during 2008 (no geotextile). The time to first
water breakthrough was 5 and 8.5 hours respectively for these tests. These figures should be
compared with the times achieved when also using geotextile in the test setup; 53.3 hours for the
test from 2012 and 32 and 38 hours respectively for the two tests from 2015. The variation in
results is large also for this flow rate but although somewhat more consistent.

* Inflow rate 1.0 I/min. One test was performed during 2008 with this rather high inflow rate and
with no geotextile. The time to first water breakthrough was 2.5 hours for this test. This figure
should be compared with the times achieved when also using geotextile in the test setup; 7 hours
for the test from 2015.

As described above, there is an obvious effect of using geotextile to increase the water storage
capacity (see Figure 5-14). The photo provided in Figure 5-15, shows how the inflowing water has
followed the geotextile up over the crown and down on the other side of the tunnel (inflow side to
the left in the photo). However, as shown in the photo, there is still a remaining dry layer of pellets
close to the block stack.
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Figure 5-14. Graph showing the determined water storage in a pellet filling installed in the steel tunnel
test equipment plotted versus water inflow rate. The bars with a “G” at the top indicates tests performed
with geotextile.

Figure 5-15. Photo showing a cross section (close to the installed geotextile) of the pellet filling at the top
of the tunnel in Test 5. It is obvious that the inflowing water has followed the geotextile up over the crown
and down on the other side of the tunnel (inflow side to the left in the photo). However, as shown in the
photo, there is a remaining dry layer of pellets close to the block stack.

Inflow behavior in steel tunnel tests

The graph provided in Figure 5-16 shows the results from the steel tunnel tests performed within
three different projects (see description in the paragraph General in this section). The test layouts
have been similar for these three test series even if there are some differences that probably have
influenced the results somewhat:
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1. The steel tunnel tests from 2008, were performed using Cebogel pellets while Asha pellets were
used in the other two test series.

2. An important difference between the test series is that the tests performed during 2008, included
two tests in each test setup i.e. the steel tunnel was divided in the middle and inflows were
applied on both sides. However, as mentioned earlier, no geotextile was used in these tests mean-
ing that the wetting from an inflow point on the side wall, in general only affected the side wall
and in some tests also partly the crown.

The green triangular dots show the results from the tests performed with Cebogel pellets (no
geotextile was used in this test series). These tests should be compared with the two tests performed
with Asha pellets (red diamonds), that also were performed without any geotextile. As shown in the
graph there is a certain spread in results but also a clear trend that the time to first outflow decrease
with increased inflow rate. It seems, however, as if the water storage capacity of the Cebogel pellets
is somewhat lower than of the Asha pellets. The pellets used in these tests had all rather similar water
content, 16 % for Cebogel and between 16 and 18.7 % for Asha.

The black dots (diamonds) show the results from the tests performed with Asha pellets and geo-
textile. There is basically one of the geotextile tests that deviates from the other and that is the test
performed with an inflow rate of 0.25 I/min. This test (from 2012) resulted in a first outflow after
39 hours which was considered early. One explanation could be that the pellets in this test series
were not sieved before use and this may have influenced the results in a negative way (later tests
have shown that fines have a tendency to end up in layers in the pellet filling during installation,
hindering the wetting process to continue past the layer (Sandén and Jensen 2016).

5.1.7 Conceptual model of water storage
General

As a basis for the calculations regarding available time before inflowing water reaches the backfill
front face, a simplified conceptual model is suggested. The model is based on results from the
laboratory tests and the scale tests described in Section 5.1.6. The conceptual model consists of two
parts: 1) A number of assumptions describing how inflowing water is flowing and how it is affecting
a pellet filling and 2) A description of how inflowing water is stored in a pellet filling in a certain
pattern depending on the inflow rate, see detailed description in Akesson et al. (2017).

1000
Steel tunnel tests (Cebogel)
# Steel tunnel tests (Asha))
# Steel tunnel tests with geotextile (Asha)
< 4
s 100
S
=
: e
b 4
7 s
S
=
o
-
(]
g 10
=
1
0.01 0.1 1 10

Flow rate, I/min

Figure 5-16. The time to first outflow plotted versus flow rate for the tests performed in the steel tunnel.
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Besides the investigations made within the projects “System design of backfill” and “Water handling
during backfill installation”, tests including bentonite pellets have also been performed within other
projects e.g. the EVA project (Borgesson et al. 2015). It is, however, important to note that the pellets
used in the EVA project were manufactured with the roller compaction method while the Asha and
Cebogel pellets investigated in this report were manufactured by extrusion. Tests performed within
the project System design of backfill (see Andersson and Sandén 2012), showed that there is a very
clear difference in behavior between these two pellets types regarding water storing capacity and that
extruded pellets with a diameter of 6 mm are superior regarding the water storing capacity.

A conceptual model describing water transports in a pellet filling has earlier been suggested in
Sandén and Borgesson (2014). The model described in this chapter is largely the same as previously.
The only change is that it is now advised to remove fines from the pellets.

The conceptual model suggested in this chapter deals with the wetting behavior of a 6 meter long
backfill section and how long time it will take for the water to reach the backfill front i.e. the begin-
ning of next 6 meter section. The wetting behavior of a 300 meter long deposition tunnel, taking into
account the position of a number of water bearing fracture zones with different inflow rates and how
they may interfere with each other during the installation process, is discussed further in Chapter 6.

From the results of the tests described in this report and from laboratory tests made in the EVA pro-
ject (Borgesson et al. 2015), a general view of how water is transported in a pellet filling surrounding
the backfill can be applied, although the behavior is somewhat irregular and not always repeatable.

Water transport in a pellet filling-general assumptions

From the results of the tests described in this report and from laboratory tests made in the EVA pro-
ject (Borgesson et al. 2015), a general view of how water is transported in a pellet filling surrounding
the backfill can be applied, although the behavior is somewhat irregular and not always repeatable.

1. The pellet fill cannot stop and seal the water inflow into the tunnel.

2. Internal piping will occur in the pellet filling until all macro voids in the pellet filling are filled
with water or if a channel flow from the inflow point to the backfill front should arise.

3. Water will flow in or pipe between the macro voids between the pellets. Below a certain thresh-
old everything will be stored adjacent to the inflow point, while above the threshold some part of
the flow can escape. This threshold depends on the flow rate but also on the material, the shape of
the pellets and thereby the shape and size of the macro voids, the ability to absorb water (density
and water content of the pellets) and if there are fines present.

4. The pellet filling will not become homogeneously wetted in the beginning. Partly a shell close to
the rock wall, or geotextile, will be wetted leaving drier parts close to the block stack.

5. The influence of the inflowing water on backfill blocks is small in the short term period required
for the normal backfill installation.

6. When the pellets get access to water they will start to swell which will affect the volume of the
closest macro voids. There will be an increased resistance to water flow in these voids filled with
gel, which means that the water will choose another flow path.

7. Once water has entered the free surface (backfill face), water will only flow through one or a
few channels out of the pellets and very little water will flow into the un-wetted parts (This is a
conservative assumption since it has been noticed that the water storing in dry parts continues
although a breakthrough has occurred).

Conceptual model of inflow behavior for six mm extruded pellets made of
Cebogel QSE or Asha

Evaluation of the results from all tests performed with pellets where a water inflow has been applied,
see Chapter 2, have resulted in an assumption of four different wetting scenarios of the pellet filling
that can occur, Figure 5-17. Depending on the water inflow rate different scenarios will occur. In
the scenarios described in Figure 5-17 it has been considered that water is flowing into the pellet
filled gap from a point inflow, situated on the wall in the middle of a six meter long backfill section.
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The different wetting behaviors, result in different available volume (macro voids between the
individual pellets) for water storing, before water will reach the backfill front. This means that for a
certain water inflow rate the available volume for water storing is known and this makes it possible to
calculate the time to the first outflow from a 6 meter long section (or a steel tunnel test). This has been
the basis for the mathematical model developed; see further description in Chapter 6. In a full scale
installation, it is of course important that the installation proceeds faster than the wetting front rate.

The limitations of the calculations are large since there are significant simplifications included e.g.
the position of the inflow point at the middle of one wall and an even thickness of the pellet layer.

In reality the inflow point locations could be anywhere and the thickness of the pellet layer will vary
between 100 and 400 mm (250 mm is used in the calculations). The calculations give, however, an
indication of available time before outflow for different inflow rates.

Scaling of test results to full scale conditions

The test results, from steel-tunnels and the TASS tunnel, were scaled to full-scale conditions. This was
performed by multiplication of the experimental time to first outflow value with a specific ratio that
is depending on flow rate, flow patterns and corresponding water filled volumes. The tests including
geotextile were scaled using the length of the geotextile and the length of the test setup. A detailed
description of the scaling is provided in Akesson et al. (2017).

Relations between time to first outflow and flowrates, as implied by the conceptual model, were
included as lines together with the scaled test results in Figure 5-18. The black lines show the
conceptual model for water storage in a 6 meter section and the dotted line shows the conceptual
model for water storing when using geotextile.
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Figure 5-18. Graph showing the time to first outflow plotted versus flow rate for the steel tunnels. The
results (i.e. the shown data) have been normalized to full scale. The black lines show the conceptual model
for water storage in a 6 meter section and the dotted line shows the conceptual model for water storing
when using geotextile.
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5.1.8 Pellet properties

The water storage capacity of a pellet filling depends largely on the shape and size of the individual
pellets but also on the water content, the density of the individual pellet and the amount and distribu-
tion of fines. Tests performed within the project System design of backfill, in order to optimize the
water storing capacity of the pellet filling (Andersson and Sandén 2012), showed that extruded
pellets with a diameter of 6 mm were superior regarding water storage capacity compared to the
other pellet types included in the test matrix (the investigation included three materials, two pellet
manufacturing methods and two pellet sizes for each manufacturing method).

The results from the new test series performed within the project “Water handling during backfill
installation” have shown that it will be necessary to put up requirements on the pellet properties
regarding water content and density. The Cebogel QSE batch delivered in 2015 was found to have
completely different properties regarding water storing behavior and later laboratory tests showed
that the properties of these pellets were completely different depending on a high water content,
about 25 %, and low dry density of the individual pellet, about 1600 kg/m’.

When manufacturing pellets with the extrusion method (the pellet type used in this investigation) it
is important to have an optimal water content of the raw bentonite. However, if the water content is
too high, it will be impossible to reach the high densities that are necessary in order to achieve the
pellet properties needed.

In earlier performed test with Asha and Cebogel QSE pellets, see compilation of data provided in
Akesson et al. (2017), where the water storage properties have been assessed to be high, the water
content have been between 12 and 20 % and the dry density of the individual pellets has been
between 18102000 kg/m’, see e.g. Dixon et al. (2008a, b) and Andersson and Sandén (2012). These
figures are recommended to serve as a guideline for the requirements on the pellet properties.

5.2 Geotextile
5.2.1 General

The principle behind this water handling method is to distribute the inflowing water so that a larger
area of the pellet fill receives the inflowing water and a larger volume of the pellet fill will therefore
be available for water storage. In general, the use of a larger part of the pellet volume for water
storage is foreseen to delay the water breakthrough at the backfill front.

The development work of the water handling method including geotextile, see Section 5.1.5, has
resulted in increased knowledge regarding this technique and its performance. The test results are
reported in Sandén (2016).

5.2.2 Functional requirements

1. The method should distribute inflowing water over a larger area and by that increase the water
storage capacity of a pellet filling. Based on results from tests in different scales, the method is
judged to work for water inflow rates between 0.25 and 1 L/min.

2. The geotextile should be able to be fastened tight on the rock walls. It should also have sufficient
strength to withstand the pellet installation process. In the performed tests, shotcrete equipment
has been used for the pellet installation. This method is assessed to be rather tough for the
geotextile.

3. The geotextile should be manufactured of material that has no or very low content of organic
material.

5.2.3 Design description

The influence of using geotextile to increase the water storage capacity of a pellet filling has mainly
been investigated in the steel tunnel test equipment at Aspd HRL, see sections 5.1.5 and 5.1.6.
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The geotextile is mounted so that it is completely covering the area (water bearing fracture zone)
from where the water is flowing. The water will use the geotextile as preferred pathway before
entering the pellet fill where the flow resistance is higher. This means that the water inflow will be
distributed over all or almost all of the geotextile area.

Depending on where the inflow points are positioned, the geotextile should continue either up on

the ceiling and downwards on the other wall (for inflow points on one of the walls) or up along both

walls (for inflow points positioned on the floor), to distribute the water over as large area as possible.
The geotextile should however not expand along the tunnel length so that the position of two deposi-
tion holes are hydraulically connected.

It is not known how the wetting proceeds from one installed backfill section to another. The use of
geotextile distributes the inflow over a larger area locally but it is possible that the distributed water
flow eventually will gather and accumulate to a more concentrated flow. A possible way to handle
this uncertainty could be to install geotextiles at a number of positions in a deposition tunnel regard-
less if these positions are wet or dry. Water flowing from backfilled sections can be expected to be
distributed again when reaching a new geotextile section, see also Akesson et al. (2017).

The geotextile quality that was tested and also proven to work in this project has the trade name
“TG1000CS” and is manufactured by HKO Heat Protection Group. The material is 100 % glass fiber
i.e. there is no organic material.

5.2.4 Post closure aspects

The suggested water handling techniques with geotextile placed on the rock walls were discussed at
a meeting with experts on post closure safety from Posiva and SKB, see also Chapter 7. A number of
open issues were raised at the meeting:

1) Material. The width, length and mass of the installed geotextile should be registered. The
amount of geotextile is estimated to be relatively small and only used locally. However, all
foreign material left in the tunnel should be well characterized. (The geotextile has a weight of
about 1 kg/m’. Installation of geotextile in one section with a width of 1 m and a length of 14
m, ceiling and two walls, will thus result in 14 kg of geotextile. The expected number of water
bearing fracture zones in Forsmark and Olkiluoto in the deposition tunnels is low, in most cases
1 to 3 fracture zones per deposition tunnel (Joyce et al. 2013) which means that the amount of
geotextile will vary between 14 and 42 kg in most of the tunnels).

2) Hydraulic conductivity. What is the resulting hydraulic conductivity after backfill swelling
against the geotextile and following homogenization? After installation the hydraulic conductiv-
ity will be high in the geotextile (the water is supposed to flow in the geotextile instead of in the
bentonite pellet filling). The properties after swelling and homogenization are not known.

5.3 Temporary drainage
5.3.1 General

Geotextile alone (see Section 5.2) is assessed to increase the water storing capacity of a pellet filling
for inflow rates between 0.25 and 1 L/min. A method that can be used for the inflow flow rates
between 0.5 and 1 L/min, for further delaying the inflowing water from reaching the backfill front is
to connect a removable drainage pipe to the geotextile.

The suggested design can be used to allow for short-term drainage of inflow water. The design idea
is to drain water from a water bearing structure through a pipe while backfill installation continues.
When the backfill installation has reached the end of the pipe it is removed so that there is no
remaining open flow path in the tunnel. With this method, the backfill installation gains time to
install a buffering pellet volume before the inflowing water starts to affect the backfill.
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5.3.2 Functional requirements

1. The method should temporarily drain inflowing water through the pellet filling. The method
should work for water inflow rates between 0.5—1.0 L/min.

2. The test method implies that a minor amount of steel (or other possible materials) and gravel has
to be left in the deposition tunnel. The design should be made so that this amount of steel and
gravel is minimized.

3. The drainage tube must be able to be retrieved after having fulfilled its task.

5.3.3 Design description
General

A drainage pipe is temporarily attached to geotextile since it is necessary to remove it after use. This
means that there is a limit of the maximum length. If the pipe is too long, the force required to pull it
out will be too high for the approach to be practical.

The temporary drainage design includes the following components:
1. Geotextile.

2. Water collector.

3. Drainage pipe.
4

. Connection between collector and pipe including a spring-loaded valve.

Functionality tests

In conjunction with one of the steel tunnel geotextile tests, a new functionality test of the temporary
drainage equipment was made. In this test the water inflow rate was set to 1 L/min. Water collectors
and drainage tubes were mounted on both sides of the tunnel. The drainage period lasted for 43 h and
after that, the valves mounted at the ends of the drainage tubes were closed and the inflowing water
could instead fill up the pellet filling. This test is assessed to well simulate a real situation that could
occur during backfilling of a deposition tunnel.

The temporary drainage design worked very well also in this test. The rather high inflow rate of

1 L/min was largely drained away through the water collector and the pipes during 43 hours. This
extra time could in a real situation be valuable in order to prevent water from reaching the backfill
front. During 43 hours almost two new sections of backfill can be installed i.e. 12 meters.

Conclusions

The performed tests have shown that the suggested design for a temporary drainage of a water
bearing fracture zone works very well. In both tests there has been a short delay before water starts
to flow out through the drainage pipe. This depends probably on the fact that the pellets closest to
the inflow point is wetted initially, but as the wetting proceeds, the bentonite swells and the flow
resistance increases in the filling which means that it is easier for the water to flow through the
geotextile into the water collector and further out through the drainage pipe.

It is required from a long term safety point of view that the design includes that the drainage pipe
must be retrieved since it is not allowed to have a highly conductive zone along the deposition
tunnel. The maximum length of a drainage pipe that should be retrieved is estimated to be 24 meters.
The pipe can be pulled out from the adapter (O-ring seal around the outside of the drainage pipe).
The water collector including pipe adapter must, however, be left in the repository.
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5.3.4 Post closure aspects

The suggested water handling technique with a temporary drainage pipe was discussed at a meeting
with experts on post closure safety from Posiva and SKB. It was suggested that the water collector
box should be optimized so make both the collector volume and its void volume as small as possible.
These demands have been fulfilled in the new suggested design.

The drainage pipe, leading water from the fracture zone, through the pellet filling, will be retrieved
after use, but the water collector will have to be left.

5.4 Water Storing Section, WSS
5.41 General

The design idea behind this water handling method is that a section of a tunnel will be used to store
water flowing mainly from a water bearing structure with water inflow 1-5 L/min but also from the
inner backfilled part of the tunnel. The storage is achieved by building a pellet filled section that
contains a large volume of empty pores that can hold the inflowing water and stop it from flowing
into the downstream backfill. The water handling method can be used for water inflows in the range
of 1-5 L/min.

5.4.2 Functional requirements
The following requirements apply for the water handling method with a WSS:

1. The WSS shall be able to store so much water from a fractured zone that the backfilling front is
always kept free from flowing water.

2. The pellet filling in the WSS must have such properties that the large sized pores between the
individual pellets are filled with water.

3. The WSS shall be long enough
a. to cover the entire fractured zone when the inflow rate is in the range of 1-5 L/min,
b. to have so much empty volume that requirement 1 is fulfilled.

4. In order to not disturb the continued backfill installation, the outer separating wall should not
leak more than an ordinary fracture or point inflow where no special actions are planned i.e.
<0.25 L/min.

5. The WSS must, also after long time, function as a mechanical support for the backfill placed on
both sides of the section. The swelling backfill bentonite will over time apply a swelling pressure
on the low density pellet filled section, which will be compressed. This will result in a transition
zone in the backfill (on both sides of the water collector section) with lower backfill density than
the average installed density. The length of the transition zone is depending on the length of the
water collector section (which in turn depends on the position and angle of the fracture zone)
and the compressibility of the pellet filling. The compression of the pellet filling must thus be
calculated for every individual WSS. It is assumed that there shall be a smallest allowed distance
between a deposition hole and the transition zone of one meter. The minimum distance 1 m is
rather arbitrarily chosen and may be changed. Since the position and length of a WSS can be
decided before drilling the deposition holes, this requirement will not result in that already drilled
deposition holes have to be abandoned.

6. The material left in the backfill shall not adversely influence the engineered barrier system i.e.
buffer and backfill. The concrete beams shall be manufactured of low pH cement.

7. The separating walls shall withstand a pressure of 50 kPa.
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5.4.3 Design description

In order to delay the water flow downstream along the tunnel from a fracture zone the WSS is built
at the fracture zone. The operation principle of a WSS is that there will not be any outflow until the
WSS has been filled with water.

The water storage section is achieved by constructing two concrete beam walls across the tunnel
perimeter, anchored to the rock walls, and filling the volume between the walls with bentonite pellets.

The design also includes geotextile on the rock surface in the center of the WSS (up to about 0.5 m
from the walls). The geotextile will be installed with the purpose to better distribute the inflowing
water along the tunnel wall and in this way additional improve the ability of the pellet filling to store
the water without having high water pressure.

The design of the components in the WSS is dependent on the functional requirements and the
interaction with the neighboring backfill components.

5.4.4 Post-closure aspects
General

The WSS includes a number of post-closure safety aspects on the repository. These aspects should be
analyzed and approved:

1. Material. The suggested technique includes that a number of different materials are left in the
repository.

2. Smallest allowed distance to a deposition hole. The deposition tunnels will be mapped in
detail regarding positions of water bearing fractures and water inflow rates. After mapping, the
exact position of the WSS will be settled and the length of the transition zones calculated. The
minimum distance from a deposition hole to the beginning of the transition zone' is suggested
to be 1 m but this is not yet decided.

5.5 Drainage hole to Adjacent Tunnel, DAT
5.5.1 General

To handle large water inflows, up to 10 L/min, it may be necessary to drain away the inflowing water
during the backfill installation. A drainage hole to an adjacent tunnel, DAT, is a method to do such
drainage. The main idea is to collect the water from a water-bearing fracture zone in a section and
then drain it to an adjacent tunnel through a borehole until the backfilling of the current deposition
tunnel is complete, and thereafter seal the borehole.

5.5.2 Functional requirements

The following requirements can be made on the water handling method with a drainage hole to the
adjacent tunnel:

1. The method shall be able to drain away inflow rates between 1—-10 L/min (the maximum inflow
rate to a deposition tunnel when handed over is today set to ten liters per minute) during the time
for backfill installation and until the construction of a tunnel end plug is finished.

2. The material left in the backfill shall not adversely influence the engineered barrier system i.e.
buffer and backfill.

3. The proposed sealing method using bentonite is deemed as being long term stable and having
a very low hydraulic conductivity. However, the long term behavior of the sealing components
cannot be checked after installation. Therefore, safety analyses should be carried out to investigate
if the drainage hole can stay open without impacting the overall repository safety. This would
mean that need for proving that the borehole sealing is extremely reliable in the long term, is
diminished.

! Zone where the backfill density is affected when the WSS is compressed by the backfill swelling pressure.
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5.5.3 Design description
General
The DAT design comprises the following elements (see figure 5-22):

» A water collector that collects all the water from the water bearing structure, installed around the
tunnel perimeter.

* A borehole leading from the water collector in the tunnel to be backfilled into an adjacent tunnel.

* The borehole sealing.

All installations (except for the borehole sealing components) will be completed and inspected
before backfill operations start. After the backfill installation is completed, the borehole is sealed.
The sealing work is performed from the adjacent tunnel into which the water was drained.

Water collector

A water collector that is installed around the tunnel perimeter has been developed. The water col-
lector can be installed before backfill installation starts since it will not interfere with the backfilling
equipment or installation process.
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Figure 5-19. Schematic drawing showing the principle for the water handling technique, Drainage
borehole to Adjacent Tunnel, DAT.

-t— Deposition tunnels —-

Water bearing fracture

Drainage borehole

Figure 5-20. Schematic drawing showing two deposition tunnels and a drainage borehole.
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Drilling and position of borehole

The investigations made regarding the design of the drainage borehole has resulted in the following
conclusions/recommendations:

» The drainage boreholes should be drilled with the core drilling technique. The main advantage with
this technique is that the drill cores can be visually examined which means that any problems with
e.g. passing through fracture zones can easily be identified. It is also assessed that this type of bore-
holes can be sealed easier since the borehole surfaces are smooth and that the dimensions are more
exact compared to percussion drilled boreholes. It is recommended that the drainage boreholes are
drilled with a diameter of 76 mm which is a standard core drill size. With this diameter it will be
easier to seal the borehole using standard products.

* The drainage borehole will (by definition) be drilled from a section of the deposition tunnel where a
water bearing fracture zone is crossing. The direction of the fracture zone in relation to the orientation
of the deposition tunnel will influence the direction of the drainage borehole since it will be favorable
to avoid drilling the borehole parallel to the fracture zone. A drainage borehole that goes parallel with
a water bearing fracture will be more difficult to seal afterwards and the bentonite sealing will also
be more exposed to flowing water that may lead to erosion. Figure 5-31 shows an example where
a drainage borehole has been drilled from deposition tunnel A to deposition tunnel B. The water
bearing fracture (that is the reason for the drainage borehole) crosses the deposition tunnels almost at
a perpendicular angle which makes it unsuitable to drill the hole here. Instead the drainage hole should
be drilled with an angle (a) relative to the deposition tunnel A. The uncertainty regarding prognosis on
the orientation of water bearing fractures is high and it is therefore recommended that an assessment
of the most suitable direction of the borehole should be made for every case on site.

» The later sealing of the borehole will be facilitated if the borehole has a certain inclination down-
wards, seen from the adjacent tunnel, Figure 5-32. Since the borehole should end up in the bottom
of the slot, it probably has to be drilled from that tunnel. In order to have enough space for the drill
rig, this means that the borehole probably have to begin a certain distance from the floor i.e. not in
the low point in the tunnel.

* The entrance to the drainage borehole should be shaped as a funnel, Figure 5-32, in order to facili-
tate the water flow. In order to prevent gravel to flow or erode into the borehole during the drainage
period, it will be needed to attach a net over the entrance. The net can preferably be made of copper.

Water flow resistance

A calculation regarding the flow resistance in a drilled borehole has been made. In the calculation
a maximum flow rate of 50 L/min have been used together with a borehole with inner diameter of
56 mm and length of 60 m i.e. a possible worst scenario.

For a relative roughness of 0.1 mm, the pressure drop will be 1.8 kPa and with a relative roughness
of 1 mm, the pressure drop will be 3 kPa. There will thus not be any problem to drain the expected
inflowing water rates (10 L/min) through a borehole with the suggested diameters and lengths.

Borehole sealing

After having completed the backfilling of the current deposition tunnel and having built a tunnel end
plug, the drainage borehole shall be sealed. Different techniques for sealing of investigation boreholes
is suggested in Pusch and Ramqvist (2007) and in a technical decision made by SKB, it has been
decided to use the so called Basic technique for this type of boreholes. The technique suggested for
sealing of drainage boreholes in this report is largely the same with some exceptions:

1. The drainage boreholes suggested in this report, will have a very small inclination compared to the
investigation boreholes which in many cases are close to vertical.

2. The length of the drainage boreholes will vary between 25 m (the distance between Posiva
deposition tunnels are 25 m and for SKB 40 m) and up to 56 m (the drainage borehole is drilled
with a direction of 45° relative to the orientation of an SKB deposition tunnel). The investigation
boreholes may have a depth of up to 1000 m.

3. The drainage boreholes will be placed so that they avoid crossing any major fracture zones. This
will facilitate the sealing process.
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Figure 5-33 shows a schematic drawing of a drainage borehole drilled between two deposition
tunnels and also a suggestion for how it could be sealed afterwards. The suggested sealing consists
of four main components:

1. Bentonite plugs.

2. Quartz based concrete plugs.
3. Bridge plugs.

4. Mechanical packers.

The sealing principles can be described as follows:

» Highly compacted bentonite plugs are placed in the central parts of the borehole in sections with
good rock (no water-bearing fractures). When the bentonite get access to water it will swell and
seal the borehole effectively.

* Quarts based plugs are placed at both ends of the drainage borehole and also in other positions
if the borehole e.g. is crossing any water-bearing fracture zone. These plugs contains a small
amount of low pH cement, about 4 % of the weight. The cement will, however, be dissolved
with time and leave a remaining quartz plug with high physical stability in order to support the
bentonite plugs. The quartz plugs will also serve as a filter between the bentonite plugs and the
gravel filling in the deposition tunnel (water collecting section) and by that prevent bentonite
from swelling out in the voids of the gravel filling. A recipe for this kind of plugs have been
developed by CBI (Cement och Betong Institutet) and is reported in Pusch et al. (2011).

* The installation of sealing components requires also that two different type of packers are used:

1. The water outflow rate in the drainage borehole is high, >5 L/min, and the first action will be
to stop this flow. This is made by use of a so-called bridge plug. The bridge plug is installed
by use of a drilling machine and will be left in the borehole.

2. The last component installed in a drainage borehole is a simple mechanical packer. This is
used during the hardening of the outermost quartz plug and can later be removed if considered
necessary.

5.5.4 Post closure aspects

The suggested water handling techniques with a drainage borehole to an adjacent tunnel was
discussed at a meeting with experts on post closure safety from Posiva and SKB. A number of open
issues were raised at the meeting:

1. Material. The suggested technique includes that a number of different materials have to be left in
the repository.

2. Sealing of the drainage borehole. Two different statements regarding the sealing of the drainage
borehole have been made:

— The borehole shortcuts two deposition tunnels if the sealing is not working as intended. It was
concluded that the design requirements on the borehole sealing should be high and also on
the verification. New safety assessment analyses should be made where it is assumed that the
sealing has failed.

— The proposed sealing method using bentonite is deemed as being long term stable and
having a very low hydraulic conductivity. However, the long term behavior of the sealing
components cannot be checked after installation. Therefore, safety analyses should be carried
out to investigate if the drainage hole can stay open without impacting the overall repository
safety. This would mean that need for proving that the borehole sealing is extremely reliable
in the long term, is diminished.

3. Water collector. The water collector should be optimized so that the resulting void volume in the
deposition tunnel is minimized. This request has been incorporated into the current design.
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5.6 Artificially wetted pellet wall
5.6.1 Introduction and background

By adding water on the installed pellets it is possible to build up a wet pellet wall that redirects
flowing water and thus prevents it from reaching the backfill front. This method has been tested
in laboratory scale but it has been assessed that further tests will be needed before it is ready for
implementation in full scale tests. In this section the current knowledge of the artificially wetted
pellet wall is discussed in the scope of a potential water handling technique.

Given the heterogeneous design of the backfill system, and it also has been shown experimentally,
that the pellet-filled gap between backfill blocks and host rock will initially be the component most
affected by groundwater inflow. This pellet-fill has a potentially large water storage capacity due
to its high void volume. Based on this means to induce improved water storage capacity in the
pellet-filled region through installation of artificially wetted pellet wall(s) has been studied. The idea
behind this method to delay water outflow has been described as follows; “water flowing from the
inside of the pellet-filling towards the front will hit the wetted pellet wall which is a much tighter
(more dense) than the rest of the pellet-filling and the water will therefore turn back up into the dry
parts of the filling. With this method a larger part of the pellet-filling can be used for water storing”
(Koskinen 2017) (Figure 5-34). Ultimately water will move beyond the wetted wall, but the backfill-
ing would have progressed substantially further down the tunnel by the time. The possible flow of
water towards the tunnel rock floor may also require attention.

5.6.2 Experimental experience from wetted walls

There are both Y2-scale mock-up tunnel test results (Dixon et al. 2008a, 2011, Koskinen and Sandén
2014) and laboratory scale test results available wherein the artificially wetted pellet wall method
has been used at the front (working) face of the backfilled volume. It is worth mentioning that it is
anticipated that a wetted pellet wall on the front face of the backfilled volume will behave differently
than a wetted wall within the backfilled volume. This is because there is no pellet material or any
other mechanical support behind a wetted wall at the downstream end. The wetted wall can therefore
become mechanically unstable and not tight (dense enough) when the water front reaches the wall,
jeopardizing or degrading the performance of the wetted wall. In such a situation, sections of
bentonite material can fall off the wall, leaving gaps that are generally too large for bentonite mate-
rial to selfheal, particularly when there is inadequate mechanical confinement (open downstream).

Designed wetted wall

Flow turns back? L

max allowed inflow? or breaks I_hrough'?
L

Figure 5-22. Schematic illustration of artificially wetted pellet wall behavior during backfill installation
(adapted, original reference from Posiva’s web page).
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In addition, all tests have been single or two-component tests, i.e., complete three- component back-
fill design, foundation layer, blocks and pellet-filling have not been tested with wetted pellet wall
method so far. Generally, it is the foundation layer that has been missing from the mockups and tests.

The tests mentioned above have been conducted by using artificial ground water simulants i.e. salt
water (TDS 10 g/1).

Mock-up tunnel tests

Mock-up tunnel tests (1/2-scale) with an artificially wetted pellet wall (at the front face) have been
performed at SKB’s hard rock laboratory in Aspd, Sweden. In the test setups, the backfill tunnel was
made from steel (see Figure 5-35), i.e. results of water distribution and water storage capacity are
based solely on post-mortem analysis, and no visual observations are possible during tests except

on the front face. In addition, water distribution in large scale tests has attributed to some random
aspects of water uptake and infiltration effects behavior, which may cause challenges to interpret the
results (Dixon et al. 2008a, b, 2011, Koskinen and Sandén 2014).

The main reason that the artificially wetted pellet wall was used at the front face of installed
pellet-filling (Koskinen and Sandén 2014, Dixon et al. 2008b, 2011) was to allow for installation of
a nearly vertical face of pellets at the downstream end (Figure 5-35). Although these features are not
entirely representative of the artificially wetted pellet walls envisioned for water handling purposes,
the wetted fronts used in the above- mentioned tests do permit some analysis on the influence of
such features on water infiltration behavior.

Koskinen and Sandén (2014) describe three 2-scale mock-up tests where the focus was testing

the water distribution potential of geotextiles. Tests without a wetted pellet front were not done as
part of that study. Any results of changed water storage capacity because of wetted pellet wall were
therefore not possible to measure. These tests did provide for observation of system behavior and
practical information regarding to method was obtained (Koskinen and Sandén 2014). Some of the
key features, observations and conclusions are:

» The wetted pellet front was installed as the final stage of pellet installation by adding
90-106 liters of water to the nozzle of the shotcrete hose, i.e., the water was added as a part of
pellet-water installation.

 The amount of added water 65-75 L/m* with an installed thickness of the wetted wall being
15-20 cm was used. These values corresponding approximately 40 % of the target volume of
the wetted pellet front, which is actually close to the void volume value in the pellet-filling. In
addition, by assuming dry density of 1000 kg/m’ for pellet-filling the amount of added water
0.33-0.50 liters per kilogram of dry pellets can be calculated. The effect of the thickness of
the wetted pellet wall has not been tested so far, but it was decided it would be best to keep the
thickness as low as practicable (Koskinen 2017). When more water is used for wall installation
it reduces the macro void space available for water storage. On the other hand, thicker sections
could be more resistant to flows, pellet filling compression and pressure buildups.

» Test against inflow rate of 0.5 L/min, the outflow (after 53 hours) of the system was “explosive”
and fist size clumps of clay flew a few meters from the outflow point. This explosion would
indicate that behind the wetted pellet front was trapped air which compressed within the pellet-
filling. It should be noted that this behavior is closely related to the used steel tunnel test method
where the volume is restricted and air cannot escape to larger tunnel volume or rock fractures.
Note, exactly the same result was seen in Dixon et al. (2011) tests.

Dixon et al. (2008b, 2011) performed /2-scale mock-up tests for testing water infiltration behavior
after emplacement. The wetted pellet fronts were used in the last four tests reported in the 2008
report and also two tests in the 2011 report since, any reference tests were not done, without wetted
pellet front at similar test conditions, any results of changed water storage capacity was not possible
to get from this work. Below are listed observations and ideas of the wetted pellet front methods by
Dixon et al. (2008b).
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Figure 5-23. Photographic images of SKB “s-scale steel tunnel mock-up (upper photo), undertaken at Aspo
HRL (Dixon et al. 2008b, 2011). The block assembly prior to installation of dry pellet fill (lower left photo)
and wetted pellet wall used in later tests (lower right photo) (Dixon et al. 2011).

1. The wetted pellet front was done by adding water at the nozzle of the shotcrete hose, the amount
of added water was not informed.

2. There was discernible pressurization (the maximum was less than 200 kPa in all tests).

3. Installation of pellets with some degree of water addition also has the advantage of reducing the
potential for the crown regions to be of lower density, or to settle and form a gap between the
pellets and the tunnel crown.

4. Dampened pellets can be installed such that they can stand vertically, reducing slumping or the
need to deal with the very low natural angle of repose for dry pellet materials and the potential
for substantial variations in the density of the placed fill.

5. Fractures were simulated with geotextile which created a gasket type of wetted bentonite area
inside the backfill (Dixon et al. 2011). This slowed down the water breakthrough times. Although
the actual technique how this wet pellet area was made is different than studied here the principle
and effect is the same. This result indicates that the method could be implemented successfully.

Laboratory tests

A series of laboratory scale tests (called wetted pellet front tests) using a transparent pellet box
configuration with Cebogel QSE and Asha rod-shaped pellets were performed at B+Tech Oy in
12/2015 (see Figure 5-36). The wetted pellet wall was used at the front face of the installed pellet-
filling, as in Ys-scale mock-up tests at Aspd HRL as well, but these tests were performed with slope
of 40 degrees (as opposed to the vertical wall in mock-up tests).
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Figure 5-24. Schematic illustration of pellet box 250 mm test configuration with inner dimensions and a
photographic image of wetted pellet front test. The wetted pellet wall was made along the top surface of the
slope. The water inlet was pointwise (diameter 6 mm) and located at the side of box (see blue sphere in left

figure).

The wetted pellet front was made manually, in 67 layers and a total thickness was approximately
10—-16 cm. Water was just sprayed on the surface of dry pellets followed pouring of dry pellets on
top of the wetted ones which were sprayed wet as well and process was repeated until 6-7 layers
was done. The amount of added water corresponded to about 40 % of the target volume of the wetted
pellet front which means that practically all of the void space between pellets was filled with water.
The amount of added water is equivalent to that used in the Y2-scale mock-up tests (Koskinen and
Sandén 2014).

Each test was terminated after the level of water (exiting from the pellet zone) filled the bottom

of the box at the non-pellet filled side to a height of 8 cm (right corner in Figure 5-35). The length
of the tests varied from one to five hours depending on the inflow rate. As can be seen from

Figure 5-36, the breakthrough times for Cebogel pellets, i.e., the time when water was observed
outside of the wetted pellet front (exiting from the pellet-filling), was more or less similar regardless
of whether wetted fronts were installed or not (as in the reference cases). A similar result was found
in the test with Asha pellets against an inflow rate of 0.25 L/min where the first observation of water
outside of the pellet system was observed at a 120 hours after the initiation of inflow, but an open
pathway (actual break through) for water exit the system formed after 200 minutes.

The total duration of the tests to meet the termination criterion indicate (see Figure 5-37) as well
that the usage of water storage capacity in the pellet-filling was not improved with the wetted pellet
walls. In addition, one of the wetted front tests showed that the almost all of the macro void space
available for water was used. This indicated higher void ratio usage efficiency which is desired for
the method but it actually doesn’t show clearly in the test time comparisons. Comparing only the
test duration times has some issues which are related to actual test system size and differences with
material installations. Small changes in material amounts and slope angle may cause differences.
Also when high inflows are used in the conduct of small scale systems, the water filling times are
short which makes the capture of changes in behavior problematic.

As seen in this work and other laboratory scale tests as well (Sandén and Borgesson 2014,
Martikainen and Schatz 2016), the initial distribution of inflowing groundwater into the pellet vol-
umes (wetting pattern and water filling) is highly dependent on the inflow rate, see also Figure 5-11.

Based on experimental observations of wetting behavior in pellet-filled volumes (Sandén and
Borgesson 2014, Martikainen and Schatz 2016), Figure 5-38 shows probable contact locations
between inflowing water distributions and wetted pellet walls at different inflow rates.

As mentioned previously, the location of inflow points in the deposition tunnel is another fixed
hydrological parameter along with inflow rate. These two parameters together with distance to
backfilling front will have a significant effect on wetting, water infiltration behavior during and
immediately after backfill emplacement. These are the main environmental parameters which will
determine the elapsed time at which when water will exit open backfilled volumes.
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Figure 5-25. Breakthrough times (top) and total duration (bottom) for wetted pellet front and reference
tests with Cebogel and Asha pellets against inflow rates of 0.25 and 0.6 L/min. Blue columns represent
reference test without wetted pellet front and red ones with wetted front.
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Figure 5-26. Schematic illustrations (left column) of initial water infiltration behavior with artificially
wetted pellet wall (adapted, original reference Sandén and Borgesson 2014) and photographic images
(right column) of wetted pellet front tests with Cebogel QSE pellets against inflow rate of 0.25 and

0.6 L/min Red circles in left figures indicate probable contact locations for inflowing water distributions
with the wetted pellet walls for two different wetting scenarios.
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The location where an inflowing water distribution will first come into contact with the wetted wall
depends strongly on the distance (referred to as a ‘tail’ in Figure 5-39) between these two features.
Assuming that water breaks through the wetted wall, inflowing water will fill the available voids
behind the wetted wall. For a situation where the wetted wall remains intact, the region being flooded
will see three major pressure-related processes occurring; firstly, compression of air by the inflowing
water, then development of swelling pressure in wetted regions and finally once the available volumes
are filled, hydraulic pressure will begin to increase. Ultimately it is anticipated that the isolated section
of tunnel will bridge into the adjacent region(s) and how this occurs (gradual bleeding of air-water
pressure or sudden decompression of isolated region), will also affect subsequent water movement and
accumulation.

With time and distance inflowing water distributions will increasingly progress upwards. This
directional aspect is another reason why the distance between fractures and wetted pellet fronts is
an important factor. This distance also defines the maximum available macro void volume for water
retention. The efficiency of the void usage depends on several factors like inflow rate and pellet
parameters, but the goal is for the most effective use of void space for water storage to be achieved.

Figure 5-39 shows an illustration of a possible water infiltration situation over a 12 m long section

of a backfilled tunnel. The deposition holes that could exist in this section and their effects on water
movement have not been taken into account in this scenario. As mentioned earlier, with high inflow
rates it is expected that the water will initially flow downwards to the floor (Figure 5-38: Blue area

1). As the wetting progresses (Figure 5-38: Green area 2) the water moves mainly sideways and
downwards through the pellet fill. During this period the pathways between macro voids start to close
because of bentonite swelling and hence inflow resistance starts to grow. The flow then redirects to a
more upwards pattern (Figure 5-38: Yellow area 3), and towards dry pellet volumes at the tunnel crown
and the open front. Once the flow has reached the highest levels (Figure 5-39: red area 4 & 5) it will
continue to move forward and spread out to sides. The wetting front can now progress along both sides
of the tunnel (Figure 5-39: red area 5). At this point it will move along the tunnel crown and reach

the open front. It should be noted that since the majority of the water is moving up it is possible that a
substantial volume of pellets will remain relatively dry (Figure 5-39: lower right region).

The presented conceptual idea of water infiltration behavior is the best and short description of current
understanding, which based on made observations of several downscaled experimental test programs.

From the wetting behavior shown conceptually in Figure 5-39 it is important to recognize possible
scale effects. If this wetting behavior is tested in laboratory-type systems, e.g., pellet box equipment
(1x2x0.25 m), then only a few meters near the inflow (Figure 5-39: inside area 2) are simulated. The
larger /2-scale tunnel tests have been executed with 4-meter long installations (Figure 5-39: inside area
3). The distances associated with these mockups therefore need to be taken into account when design-
ing the location of wetted pellet sections in tunnel-scale tests. The use of differing geometries or scales
could mean that breakthrough point(s) could change, installation time windows could be unrealistic
and the actual performance of the method in an actual deposition tunnel may not be satisfactory. The
use of a tight wetted pellet may also result to a situation where water is directed into backfill block
stacks. This possible risk has not been assessed in studies yet.

Section conclusions:

+ Stand-alone functionality and performance of an artificially wetted pellet wall in delaying water
exit has not been yet verified experimentally.

* The actual magnitude of the water handling performance related to macro void volume filling
efficiency or gained time has not been determined for flow rates of interest in this study.

» The floor component should be included in larger studies.
+ Atight wetted wall could possibly direct inflow into block stack.

» Useful practical information from the installation and design basics has been collected from previ-
ous tests from different scales.

* Preliminary information has been gathered from the possible breakthrough point locations.
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Figure 5-27. Schematic illustration of anticipated initial water infiltration behavior from high flow
(> 0.5 L/min) fracture in a 12 m-long section of deposition tunnel. Water infiltration zones are marked
with numbers from 1-5 which correspond to wetting sequence.

5.6.3 Summary and conclusions

It is proposed that a wetted pellet wall could be used as a water handling method during backfill
component installation. The artificially wetted pellets would create water tight section(s) that would
direct the inflowing water towards the back of the tunnel rather than allowing it to move forward and
potentially out of the downstream face of the tunnel backfill. This would allow more time for the
installation operations by slowing down-tunnel movement of water. Installation of the wetted pellet
walls would be made using shotcrete equipment, to blow the pellets into place while adding the
needed extra water at the nozzle.

Wetted pellet walls have been used in previous steel tunnel tests as part of the tests but not as the
main subject of investigation. A preliminary laboratory scale study related to their use was done at
the end of 2015. To use artificially wetted pellet walls as a water handling method requires further
study and confirmation of the design concept/implementation. Current knowledge of the subject is
not complete enough to produce the fully detailed method description needed for full scale testing
and final evaluation of the concept.

5.7 Local freezing
5.7.1 Introduction and background

The objective of the work was to evaluate the feasibility of Local Freezing to control groundwater
inflows during backfill operations in hard crystalline rock. Ground Freezing is a well known technique
but there is not proper information of the use of it in hard good quality rock. The conceptual idea is
to freeze the rock around the excavated tunnel to stop the possible inflows. This is not typical in hard
crystalline rock where the issue is most often the opposite — to prevent rock from freezing. Because
of that, however, the technique to insulate the tunnel surfaces is well known and the tools to evaluate
the heat load and need for thermal insulation are well known.

The method is commonly used in civil engineering when building in sand or other loose wet soils
where freezing has been used to control groundwater (e.g. in shafts), to mechanically stabilize soils
so that the reinforcement can be carried out safely and to enable tunneling through mixed ground.

Earlier state of the art report had recognized freezing as viable option to be used as water handling
method in underground repository conditions. Based on this it was added as part of a work package
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in the joint SKB-Posiva project Water handling during backfill installation. It was also recognized
that the information about the usage with crystalline rock was very limited. If the method could

be used in crystalline rock at deposition depths, it would provide significant help in several water
handling situations. It is even possible that no other methods would be required if the whole length
of the tunnel would be for example frozen. However, there were many unknown factors identified
that need to be ruled out before the method can be considered for use in deposition tunnels.

Based on the general requirements, the potential risks for long term safety as well as the nature of
the method, the method specific preliminary requirements were listed (Table 5-6).

Table 5-6. The method specific requirements for the local freezing.

The freezing agent must be selected so that, if there are leaks, the agent will not be hazardous to the environment and
can be removed from the surfaces of the tunnel.

Time of active freezing must be possible to coordinate with the underground operations.

After the active freezing period, the rock must remain frozen for the time needed for backfill installation of a deposition
tunnel (around 2 months).

The freezing process shall not cause any additional fracturing of the rock.

For the project, work was commissioned by arranging a workshop with selected experts so they
could all express their opinions and get feedback directly from each other. The expected outcome
was to have knowledge of the relevant cases, if there are any. If no relevant cases can be found,
there would be some expert opinions on the relevance of the risks associated with the method, and
recommendations regarding possible tests as a road map.

5.7.2 General about ground freezing

Ground freezing is a process of making water-bearing strata temporarily impermeable and to
increase their compressive and shear strength by transforming joint water into ice. Below are some
general issues related to ground freezing:

» Freezing is normally used to provide structural underpinning; temporary supports for an excava-
tion or to prevent ground water flow into an excavated area.

* Successful freezing of permeable water-bearing ground affects simultaneously as a seal against
water and substantial strengthening of incoherent ground.

+ It is applicable to a wide range of soils but it takes considerable time to establish a substantial
ice wall and the freezing conditions must be maintained by continued refrigeration as long as
required.

» Example of application is e.g. in the Copenhagen Metro project where a pedestrian passage
from a new metro station to an existing railway station was constructed underground. Since the
existing rail traffic had to continue, the ground had to be frozen to avoid the risk of collapse due
to excavation of the transfer tunnel. Two 100 kW chillers located on the surface cooled the soil
around the pipes to —24 °C.

* Ground freezing may be used in any soil or rock formation regardless of structure, grain size or
permeability.

» However, it is best suited for soft ground rather than rock conditions.

* Freezing may be used for any size, shape or depth of excavation and the same cooling plant can
be used from job to job.

5.7.3 Survey and expert’s interviews

Three senior experts with significant expertise in ground freezing and freezing of soils and hard rock
were interviewed. All the experts had geotechnical background and one has done KBS-3V based
research several years. The persons were:
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1) Seppo Saarelainen/ PhD in geotechnical engineering, retired.

2) Harri Kivikoski/ Senior Scientist, M.Sc. Tech. Experience in modelling of ground & rock freez-
ing. Repository related research activities.

3) Heikki Onninen/ M.Sc. Tech Dimensioning of thermal insulation in road & railway construction,
retired.

Expert opinion

All experts felt that freezing of hard rock to seal groundwater inflow is feasible and well established,
but there are certain special issues related to this application that should be taken into account:

a) How long time can be reserved for freezing operation?

b) Can the tunnel be closed for freezing or should it be available for other operations during cooling
phase?

¢) How much space will be available for freezing pipes and insulation?

d) Is it possible to ream the tunnel to larger width so that the cooling components could be made
flush with the tunnel surface?

e) There is no significant difference between ground and rock freezing.

f) How long the tunnel can be sealed in frozen state after cooling system has been dismantled in
practice?

g) When dismantling the cooling system, there might be some small rock pieces falling from
surfaces.

h) Are there some severe restrictions which affect the selection cooling agent?

1) Liquid nitrogen could be used for initial freezing and some other agent for maintaining the frozen
barrier (e.g. 20 % NaCl saline solution).

J) In extreme cases, when there are severe restrictions for other cooling agents, one could use cold
air for cooling.

k) Is it possible that the inflow points “travel” to new position after freezing — how long sections
should be frozen?

1) Water flow and temperature. The freezing time will be increased by flow which forms a continu-
ing supply of heat energy and, if the flow is large and the water temperature high, freezing may
be completely inhibited. The intended use of the method in repository case would be with tunnel
sections which have rather high inflow rates up to several L/min.

There was consensus that the freezing can be implemented e.g. by using aluminum surface elements
with proper insulation. Nitrogen could be used for fast initial freezing and NaCl solution for
maintaining the refrigeration. The cooling circulation system could be outside the tunnel. The pipes
to cooling element could be located in the tunnel roof or wall.

Risks

Several of the issues are related to the timetable for cooling and maintenance of sealing after dis-
mantling. There are also issues related to technical design and selection of cooling agent. These are
merely optimization and design issues. Underground work safety will be included in these solutions.
It seemed that there is little information about the time that sealing is maintained after dismantling.
This may be a challenge if the time period is in the range of 2 months. This evidently depends on the
operation cycle of the deposition tunnel and should be discussed further.

The last of the issues, however, is more significant. There seems to be little information about the
effect of constant inflow on freezing. This is an issue that could be studied and tested in laboratory
based on real site specific data (inflow rates, salinity, temperature etc.). With high inflow rates this
will most likely be the key point if the technique should be investigated further or implemented to
full scale testing.
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5.7.4 Conclusions

Freezing of soil and hard rock are technically very similar and experience from soil freezing is
applicable. In good quality rock there is no need to stabilize the rock while freezing and therefore it is
considered easier by experts.

Freezing is a well-established technique which can be utilized for ground water control in hard crystal-
line rock. The three important components of freezing are well established: a) design and thermal
dimensioning, b) Insulation technique and c) freezing technique.

The salinity of groundwater is not found as an issue by experts even at high salinities such as TDS 70 g/l1.

Sealing of constant groundwater inflows at high pressure need to be evaluated further and require
additional studies.

The requirements for the method usage time windows (coordination with other underground activities
and length of the frozen state period) need to be re-evaluated.

The acceptable water inflow rates after the method has been applied need to be clarified. The reducing limits
should be defined i.e. is it acceptable if the inflow rate is reduced from for example 2.0 L/min to 0.5 L/min.

5.8 Light fortified Concrete Plug, LCP
5.8.1 General

Besides the developed methods for water handling it has been assessed that in case of a temporary stop
in the backfill installation process, it should be possible to install a temporary plug so that the already
installed backfill can be kept in place.

5.8.2 Functional requirements

The functional requirements that have been used on the construction of a temporary plug, were settled in
conjunction with the design work. Requirements were partly specified in a State of the art report (Koskinen
2016) but judgements have also been made regarding what is appropriate, within the design work:

1. The maximum operational time for the temporary plug was estimated to one year. A more probable
time is perhaps one or two months but in order to increase the utility it was decided to design the plug
for an operational time of one year.

2. The maximum swelling pressure from the temporary plug need to withstand is 1 MPa. Note.: During
the design work it has been discovered that this requirement is not in complete agreement with the
one above, since calculations have shown that the pressure may exceed 1 MPa within one year, see
further description in Section 5.8.4.

3. The plug should be designed so that no water pressure can be acting on the cross-section area, only
swelling pressure from the backfill.

4. If possible, the plug should be constructed so that it can be reinforced in steps.

5.8.3 Design description
General

The design idea of the LCP is to build a rather simple plug in short time that can withstand a swelling
pressure build-up from the backfill behind it.

The design comprises the following elements:

* The completion of the backfill front behind the plug

* A drainage layer to delay water pressure from acting on the concrete wall.
* A concrete beam wall.

* Reinforcement, installed on the outside (downstream side) of the concrete beam wall.
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Completion of the backfill front

The backfill block stack is installed with an inclination in normal backfill operations. In the case
where the backfill installation is interrupted and a LCP will be constructed, the backfill front needs
to be completed so that it is near vertical. The vertical wall is necessary to achieve an even pressure
on the plug from the backfill. A gap will be left between the backfill blocks and the plug. This gap
will be filled with backfill pellets.

Drainage layer

A drainage layer will be constructed against the backfill front. The purpose of the drainage layer is to
prevent water pressure from acting directly on the concrete beam wall.

Concrete beam wall

The concrete beam wall is a simple construction designed to be erected quickly. The concrete beam
wall is anchored to the rock walls but must be reinforced to counteract the eventual swelling pressure
from the backfill.

Reinforcement

Two types of reinforcement have been considered: Steel beams and shotcrete. The steel beams are
faster to install than the shotcrete and can be removed if there has not been a pressure build-up on the
plug. The steel beam reinforcement withstands 1 MPa of swelling pressure. The shotcrete reinforce-
ment is slower in installation due to curing times. This type of reinforcement can be strengthened

in steps by the addition of more shotcrete layers and can therefore add withstand larger swelling
pressures than 1 MPa which may be necessary in tunnels with large water inflows. The shotcrete
reinforcement is not removable.

5.8.4 Swelling pressure development

The models of the temporary concrete plug shows that the total pressure on the plug after one year
is highly dependent on how water is transported into the bentonite, and in particular into the backfill
blocks. If the drainage layer which confines the pellets filling is well drained, and hence do not
supply water to the pellets the pressure on the plug should not reach a higher pressure than about

1 MPa after one year, assuming a thickness of the pellets filling between blocks and plug of at least
10 cm, even if the plug is situated relatively near a fracture. However, if the plug is situated very
near a fracture with a substantial inflow, and the drainage layer is not working optimally, such that
some water is supplied to the pellets filling via drainage layer, the pressure on the plug might exceed
1 MPa less than one year after installation.

As an example of this the time evolution of the plug pressure is shown in Figure 5-41 from the three
models with a 10 cm thick pellets filling and small tunnel radius. The orange line identifies the most
likely “wet” scenario to occur, where the pellets column has free access to water (type 1 boundary
condition). The red and blue lines identify the type 2 and 3 models, where the pellets column is
saturated within a day after installation (hence the plug is situated very near a high-flowing fracture).
The blue line represent the case where the drainage layer works as intended, whereas in the model
represented by the red line the pellets filling between the blocks and plug is hydrated also via the
drainage layer. The plug-pressure time evolution is initially rather similar in the three models, even
though the type 1 models shows a slightly slower pressure build up. The main pressure contribution
at this stage comes from the swelling of the outer pellets column.

In the type 3 model (red line; nearby fracture, no drainage) the pressure on the plug after one year
exceeds the allowed pressure of 1 MPa (it is 1.7MPa). From the time evolution in the figure it can be
seen that the build-up of pressure on the plug is gradual and that, according the model, it takes several
months before the pressure on the plug exceeds 1 MPa. It should be stressed that the model is not
detailed enough to give a minimum time during which the plug pressure will be lower than 1 MPa.
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Figure 5-28. Time evolution of the pressure on the concrete plug from the three models with a small tunnel
radius and a 10 cm thick pellets filling between the backfill blocks and the LECA blocks. The orange

line identifies the model with permeable rock but no nearby fracture. The blue identifies the model with a
nearby fracture and working drainage, while the red line identifies the model with a nearby fracture and no
drainage.

From the modelling results presented here it is clear that the pellets filling between the backfill
blocks and drainage layer should be at least 10 cm thick if the pressure on the plug is to remain
below or at 1 MPa for one year. Even with this thickness, however, it is recommended that the plug
is not placed directly in connection with a high-flowing fracture, and that if a high water inflow is
present further down the tunnel, drainage should be ensured to be well-functioning.

5.8.5 Post-closure aspects

The suggested design of a temporary plug was discussed at a meeting with experts on post closure
safety from Posiva and SKB. The proposed design was considered acceptable from a post closure
perspective.

In the method description describing the construction of a temporary plug, it has been suggested that
the plug should be positioned in the middle between two deposition holes. The length of the plug

is about 0.6 m. If the reinforcement is removed before the backfilling continues on the downstream
side of the plug, the backfill above the closest deposition holes will be unaffected and thus fulfil

the requirements regarding swelling pressure and hydraulic conductivity. If the longest version

of reinforcement (2.2 m) is used it will reach somewhat past the edge of the nearest downstream
deposition hole. If it is judged that the reinforcement must be left in the tunnel, it will probably be
necessary to abandon this deposition hole since the requirements on the backfill above not will be
fulfilled. This means that the already installed canister in this deposition hole must be retrieved. If a
thinner reinforcement that does not reach the next downstream deposition hole is used, the already
installed canister in this deposition hole could be left without any extra actions.
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6 Mathematical model of water storage and
spreading

A mathematical model was developed with the objective to calculate the available time for specific
deposition tunnels and for specific water inflow scenarios, and to analyze if there is a risk that
inflowing water can catch up with the backfill front (Akesson et al. 2017). The water transport

was represented as progressing water fronts from multiple water inlets in a tunnel, for essentially
any combination of inlet positions and flow rates. The partial water-filling of the pellet-filled
sections was represented with a flow rate dependent function, which was adopted from results from
steel-tunnel tests. The model was intentionally given a general definition which could enable an
evaluation of features which are specific for SKB and Posiva, respectively, such as tunnel section
area and backfilling rate.

6.1 Model description

A deposition tunnel was represented as a one-dimensional problem (Figure 6-1) with a specified set
of water inlets, each one attributed with a coordinate and a flow rate. The protocol for the backfilling
of the tunnel was represented with the filling time as a function of the coordinate, which defines a
line in a time-space diagram. The filling time function and the inlet coordinate gave the starting time
for each water inlet, which came into play once the backfilling front had passed the position for this.
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Figure 6-1. Tunnel with 3 water inlets (upper). Tunnel-filling diagram with filling time function (center
left). Final water filled area profile with pore area function (bottom left). Area-fraction distribution for
different times (right).
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The distribution of voids in the backfill which can be water-filled was represented with a pore area
function, i.e. the accessible pore volume per unit length. The partial water-filling of the pellet-filled
sections was represented with a flow rate dependent area-fraction function. This means that the
entire section area was filled as a homogenous progressing front for sufficiently low flow rates.
However, only a fraction of the section area was filled at higher flow rates. For water-storage sec-
tions it was assumed that the entire area was filled, regardless of the flow rate. The use of geotextiles
has been found to lead to a more extensive filling of the accessible pore volume. This behavior

was represented with a higher-valued area-fraction function. No attempt was made to use different
functions in different tunnel sections. Instead two quantified functions, representing cases with and
without geotextiles, were used to analyze the water-filling of the backfill.

The flow from an inlet was assumed to be divided in two equal sub-flows with progressing fronts in
two directions along the tunnel (inwards and outwards), i.e. with half the flow rate in each direction.
Such a unit was denoted a “plume”. These progressing fronts proceeded as long as they did not
encounter the tunnel ending or another plume. When a plume encountered the inner tunnel ending it
began progressing outwards with the total flow rate. When two plumes encountered each other they
merged into one plume with a flow rate equal to the sum of the flow rates of the two original plumes.
This spread with progressing fronts in two directions, with half the total flow rate, unless it had a
history of encountering the inner tunnel ending, in which case it only progressed outwards with the
total flow rate.

The evolution of encountering and merging plumes was modelled through the definition of an
algorithm, which essentially was a systematic procedure for calculating where and when the next
encounter would take place. This event defined the starting point for a new generation of plumes,
with one plume less than in the previous generation (except for tunnel-end encountering events).
This meant that the system could be described as a tree with a decreasing number of branches for
each generation, ultimately resulting in one remaining main trunk. The output from this can be
illustrated in a Tunnel-filling diagram which shows the progress of fronts and the encounter events
in a time-space diagram (Figure 6-1). A second algorithm mapped the resulting plume network for a
specific time and resulted in a table of coordinate intervals and local flow rates, which in turn were
transformed to a water-filled area profile (Figure 6-1), which illustrates how much of the accessible
pore volume has been filled at a given time.

The following features and conditions were used as input for the model:
i.  Tunnel length (e.g. 300 m).

ii. Water inlets, i.e. an array of fracture coordinates and flow rates.

iii. Rate of backfilling (e.g. 6 m/day for SKB and 2.9 m/day for Posiva).

iv. Pore area (i.e. accessible pore volume per unit length), e.g. in pellets-filled slots (2 m* for SKB
and 1.4 m’ for Posiva) and in water-storage sections (11 m* for SKB and 8.3 m? for Posiva)

v. The water-filled fraction of the pore area was assumed to be controlled by the flow rate. This
area-fraction function was calibrated for SKB and Posiva conditions, respectively, and for cases
with or without geotextiles.

6.2 Analysis of inflow scenarios

An analysis was performed for five inflow scenarios. These consisted of seven fractures and inlets
(three in one case), and the different cases provide a wide range of flow rates: the highest total
inflow was approximately 5 L/min, while the lowest was approximately 0.1 L/min. Each scenario
was analyzed both for SKB and Posiva conditions, and each case was investigated for two area-
fraction functions: one adopted for conditions with and one without geotextiles:

* The total flow rate in the wettest case was so extensive (~5 L/min) that a water storage section
was included for both the SKB and the Posiva conditions. The results for the SKB conditions
show that the time for the water-front to reach the outer tunnel end (54 days) was only slightly
longer than the time for the backfill-front to reach the tunnel end (50 days). For the Posiva condi-
tions the water-front end-time (89 days) was shorter than backfill-front end-time (103 days). The
use of geotextiles had only a marginal influence on the results in this case.
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* One case with three inlets and a total flow rate of 1.8 L/min resulted in water-front end-time of
90 and 110 days, for cases with geotextiles and for SKB and Posiva conditions, respectively. This
was only marginally longer than the backfill-front end-time, especially for the Posiva case. It was
also found that the water-front end-time was shorter than the backfill-front end-time for cases
without geotextiles.

* One case with seven inlets and a total flow rate of ~1 L/min showed that the water-front end-time
was significantly longer than the backfill-front end-time, even for the cases without geotextiles:
125 and 139 days for SKB and Posiva conditions, respectively (Figure 6-2). With geotextiles
the water-front end-time were even longer 286 and 279 days for SKB and Posiva conditions,
respectively.

» Cases with total flow rates of ~ 0.5 L/min resulted in water-front end-time several of hundreds of
days, which is much longer than the backfill-front end-time. Cases with ~ 0.1 L/min resulted in
water-front end-times of several thousands of days.

6.3 Tentative flow rate limits

The described model can apparently be used to assess the feasibility to backfill a tunnel with a spe-
cific concept and a specific installation sequence. In principle, it could be possible to use this model
for analyzing the predicted inflow scenarios for all tunnels at a site, in order to estimate the number
of tunnels requiring different water handling methods. A simpler approach could be to quantify flow
rate limits for the feasibility of different method, which could be used as rules of thumb. However,
since there are virtually an infinite combination of different inflow scenarios, there is no obvious
way how to make a comprehensive definition of such limits. A simple procedure can be to consider
cases with only one water inlet, located half-way through the tunnel, and to quantify the flow rate
for which the resulting water-front end-time exceeds the backfill-front end-time with a specified
margin (10 days was chosen). Results for different methods and WMO conditions are compiled in
Table 6-1. It can be noted that the flow rate limits for cases without WSS is for Posiva conditions
approximately 25 % lower than the values for SKB. For cases with a WSS the corresponding
difference is 43 %.
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Figure 6-2. Tunnel-filling diagrams and water-filled area profiles with Case 2 (no geotextiles). (left: SKB;
right: Posiva). Water inlets with 0.1 L/min were applied at 70, 76, 154, 216 and 258 m. Water inlets with
0.2 and 0.25 L/min were applied at 18 and 222 m, respectively.
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Table 6-1. Tentative flow rate limits for different methods and conditions.

Method SKB Posiva

Water storage section 3.0 L/min 1.7 L/min
Geotextile 1.5L/min 1.2 L/min
No geotextile 0.9 L/min 0.7 L/min

6.4 Uncertainties

Even if the described model can take a variety of scenarios and conditions into account, it should be
stressed that there are a number of uncertainties inherent in the method.

With the chosen approach, the plumes are assumed to fill a constant fraction of the section area
which depends on the flow rate, which gives rise to the rectangular segments of the water-filled area
profiles. Moreover, once the front has passed a certain position, there is no subsequent wetting along
this position. This description differs to some extent from the conceptual model that has been consid-
ered previously in which different wetting behaviors are found for different flow rates, e.g. upwards
and downwards triangular wetting. However, these descriptions were based on experimental data
from tests which simulated backfilled sections with a quite limited length. There is no corresponding
data which shows how these behaviors develop along longer sections and longer time-scales.

The chosen approach also involves the definition of an area-fraction function. A function on the form
min[1,q,/q] was proposed for this, and this means that the area-fraction equals unity for all flow
rates lower than q,. This may be quite different from upward triangular wetting behavior mentioned
above, although it appears to be relevant to assume a completely distributed wetting at very low flow
rates. Still, there may be other forms of the area-fraction function that can describe the real process
more accurately. In addition, even if the chosen form is relevant, there may still be an uncertainty
in the adopted q, values. Nevertheless, if new information would suggest that another form of the
area-fraction function or another parameter value is more relevant, then it should be quite easy to
modify the calculations presented in this chapter. Moreover, the water storage capacity may exhibit

a stochastic behaviour, which was not addressed with the chosen approach.

Finally, the chosen approach assumed that the water flow was divided in two-equal sub-flows with
progressing fronts in two directions along the tunnel. There appeared to be some justification for
this, considering the triangular or symmetrical wetting behavior found in experiments. Still, it may
eventually be evident that there is a preference for some direction (for instance outwards). But if so,
then it should be a quite limited task to generalize the model presented here for a variety of division
schemes, perhaps incorporating a stochastic behavior as well.
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7 Post-closure safety aspects

A meeting was held with experts on post closure safety with the main purpose to find any possible
objections regarding post closure aspects on the proposed water handling methods. As a result of
the meeting, the initially suggested designs of WSS and DAT were radically changed. These two
methods included, in the early design, large amounts of sand filling serving as either water storage
or water collector. The experts raised major concerns regarding these volumes with free water that
could facilitate erosion of buffer and backfill. Another concern was that bacteria could grow in
the water. The designs of WSS and DAT presented in this report have been changed and the large
amounts of sand fillings removed.

7.1 Conclusions from the meeting
7.1.1 General
Some general statements were made at the meeting:

* The cost-benefit analysis of these methods have to be done considering the application in full
scale and in-situ conditions, including the cost for additional work in the safety assessment, not
only the technical backfill installation work.

* For all methods it is needed to know the smallest allowed distances to deposition holes and how
many of these systems that are allowed in one deposition tunnel.

* Since the suggested methods are motivated by the economic loss of abandoning deposition tun-
nels or installing a tunnel end plug inside the tunnel, it is suggested that the cost of a new safety
assessment work procedure also should be a factor in the judgement to apply a method or not.

7.1.2 Geotextile and temporary drainage

The methods including geotextile and a temporary drainage are viewed as acceptable from a post
closure safety perspective as long as a number of open issues are handled:

Geotextile:

*  What is the resulting hydraulic conductivity in the interface between rock and the swelling
backfill?

*  What are the maximum dimensions of the geotextile needed?

+ Is it possible to reach 0.1 MPa swelling pressure everywhere in the backfill? Is the requirement
applicable for fracture zones? (Judged as a non-issue compared to hydraulic conductivity).

» Evolution of geotextile with time. How does this impact the hydraulic conductivity near the
rock wall?

» Should the installation of geotextile be made before or after rock reinforcement? (Worker safety
issues).

Temporary drainage:
» Can this method be used when the inflow point is in the floor?
» Optimization of the water collection box. Can the volume be smaller and the gravel removed?

» Optimization of the water collection box. Is it possible to use material that degrades faster over
time or breaks when exposed to swelling pressure?

7.1.3 Water storage section

The water storage section should not be used in the repository (this statement concerns the early
design which now has been changed).
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7.1.4 Drainage borehole to adjacent tunnel

At the meeting it was stated that the water handling method with a drainage borehole to an adjacent
tunnel can be used under the condition that the borehole sealing is effective and reliable. The effect
of a failed sealing should be investigated in safety assessment analyses of the repository.

However, after review of the method the following comment regarding the borehole sealing was
made:

“The proposed sealing method using bentonite is deemed as being long term stable and having a
very low hydraulic conductivity. However, the long term behavior of the sealing components cannot
be checked after installation. Therefore, safety analyses should be carried out to investigate if the
drainage hole can stay open without impacting the overall repository safety. This would mean that
need for proving that the borehole sealing is extremely reliable in the long term, is diminished.”

7.1.5 Temporary plug

The use of the proposed concrete plug with either steel beam reinforcements or shotcrete reinforce-
ments is viewed as acceptable from a post-closure safety perspective. The amounts and composition
of all materials must, however, be known.
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8

Summary and conclusions

8.1 General

In the final repositories for nuclear waste, that are planned to be constructed by SKB and Posiva, it
is expected that there will be water flowing into the deposition tunnels. The expected modelled water
inflow rates will vary from almost dry tunnels and up to a maximum of 10 L/min. Since there is a
clear incentive to use as much of the available rock volume and to not abandon already constructed
tunnels there has been an aim to develop methods in order to handle the inflowing water of higher
rates. The work presented in this report was divided in the following main activities:

1.

Laboratory tests to investigate how the fines in the pellet filling influence the water storage
capacity.

. Large scale tests in the Bentonite Laboratory at Aspd. The aim with these tests was to investigate

how geotextile can be used to distribute the inflowing water and by that increase the water storing
capacity of a pellet filling.

Design of different water handling methods. The work has resulted in the development a number
of water handling methods that are intended to be tested in full scale tests. Also preliminary
laboratory scale tests were commissioned for the method artificially wetted pellet wall.

Design of a light fortified concrete plug. This type of plug is intended to be used in case of a
temporary stop in the backfilling process.

. Development of a mathematical model for water storage and spreading in a pellet filling. The

model is intended to be used in conjunction with the planning of the backfilling process for each
deposition tunnel.

Development of requirements on inflow data for deposition tunnels. This data is important when
planning the backfilling process for a specific deposition tunnel.

The reporting on these activities are summarized in the Sections 8.2—8.7 below.

8.2 Laboratory tests of bentonite pellets-influence of fines

In different projects it has been observed that fine material present in a pellet filling has a tendency
to end up in layers that may prevent the water storing in a specific direction, see e.g. Andersson and
Sandén (2012) and Koskinen and Sandén (2014).

In order to study this issue, new test series have been performed within this project in different
laboratory scales (Sandén and Jensen 2016).

The investigations have resulted in a number of recommendations, both regarding fines in a pellet
filling but also regarding the required properties of the pellet:

The presence of fines in a pellet filling depends on if it is present already in the delivered batch
or if it is created during installation. To be sure that one gets an as functional pellet filling as
possible, it is recommended that all pellets manufactured should be sieved before installation.
It is also recommended that the pellet installation equipment (blower, conveyor etc.), should be
designed so that as little fines as possible are created during installation.

The properties of the backfill pellets are important in order to achieve a pellet filling with great
capacity to store the inflowing water. In earlier performed test with Asha and Cebogel QSE
pellets, see compilation of data provided in Akesson et al. (2017), where the water storage
properties have been assessed to be high, the water content have been between 12 and 20 % and
the dry density of the individual pellets has been between 1810-2000 kg/m’, see e.g. Dixon et
al. (2008a, b) and Andersson and Sandén (2012). These figures are recommended to serve as a
guideline for the requirements on the pellet properties.
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* A method describing a validation test for backfill pellets regarding water storage capacity should
be developed. The test may advantageously be based on e.g. the tube tests or on the large slot
tests described Section 5.1.4.

The tests have shown that fines positioned as layers in a pellet filling temporarily will seal very
efficiently, within a pellet filling, when water reaches the layer and thereby prevent water from
flowing past the layer, see e.g. photos provided in Figure 5-3 and also Sandén and Jensen (2016).
This is a technique that possibly also could be used to direct the wetting in a certain direction. It has
e.g. been discussed to use wetted layers of pellets to prevent water flow but an alternative could be to
instead use layers of fines. This application has, however, not been tested.

8.3 Large scale tests in the Bentonite Laboratory at Asp6
studying the influence of geotextile

Tests have earlier been performed within the SKB project “System design of backfill” with the aim
to investigate if geotextile can be used as a water distributor during backfill installation. In this
project five additional tests were performed in large scale using the same steel tunnel test equipment
at the Bentonite Laboratory at Aspd.

A main conclusion from the tests is that there is an obvious effect of using geotextile to increase
the water storage capacity. The geotextile distributes the inflowing water over a larger area so that
the inflowing water get access to a larger part of the pellet filling, which means that more water can
be stored before water flows out towards the backfill front. This increase in water storage capacity
for the pellet filling is important since it results in that inflowing water to deposition tunnels with
medium high water inflow rates (0.25—1 L/min in one point inflow or fracture zone and with a
maximum total inflow of 5 L/min) can be handled using geotextile only, or in combination with
temporary drainage, which are assessed to be relatively simple means. (Simple meaning that the
methods are fast and easy to install and do not interrupt the backfill installation.)

8.4 Design of different water handling methods

The inflowing water to the deposition tunnels can largely be handled by storing the water in the
pellet filling surrounding the block stack. By using geotextile to distribute the water over a larger
area the water storage capacity can be additionally increased. Predictions (modelling) regarding
expected water inflow rates shows, however, that there will be deposition tunnels with inflow rates
higher than what can be handled by storing inflowing water in the pellet filling (and improved by
using geotextile), and to use these tunnels it would be necessary to develop and use other water han-
dling methods. These methods includes in some cases that new materials (concrete, steel etc.) must
be used and left in the deposition tunnels. A meeting has been held with experts on post closure safety
in order to find any objections on the suggested water handling methods and also to find what needs
to be further developed, see Chapter 7. The outcome from the meeting has strongly influenced and
changed the originally design for two of the suggested methods (DAT and WSS). A brief description
of the suggested water handling methods and their capacities is provided below.

8.4.1 Water storage in pellet filling

In different tests it has been observed that a bentonite pellet filling has a large ability to store water
flowing into the deposition tunnel from the rock, see e.g. Dixon et al. (2008a, b) and Andersson
and Sandén (2012). It has also been assessed that this ability probably is enough in order to avoid
problems with inflowing water reaching the backfill front for the main part of the tunnels in a future
repository (Sandén and Borgesson 2014).
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Capacity

The technique to store the inflowing water in the pellet filling surrounding the block stack is estimated
to have a capacity to handle inflow rates in one water bearing fracture zone/point inflow <0.5 L/min.
The total inflow to the deposition tunnel should in that case be <1.0 L/min. If the total inflow is
between 1.0 and 5.0 L/min, the maximum inflow to one fracture zone/point inflow is <0.25 L/min.

8.4.2 Geotextile

The main idea by using geotextiles is to distribute inflowing water from the rock surface over a
larger pellet area and by that increase the water storage capacity and delay the water breakthrough at
the backfill front. The influence of using geotextile to increase the water storage capacity of a pellet
filling has mainly been investigated in the steel tunnel test equipment at Aspd HRL. The results from
the tests show that the water storing capacity of a filling clearly increases for inflow rates between
0.25 to 1.0 L/min.

Capacity

The technique to use geotextile to improve the water storing capacity of a pellet filling is estimated
to be useful to handle inflow rates in one water bearing fracture zone/point inflow between 0.25 and
1.0 L/min (1.0 L/min is on the limit and it is therefore recommended to also use a temporary drain-
age in sections with an inflow rate between 0.5 and 1.0 L/min, see next Section). For higher inflow
rates there is an obvious risk of channel flow to occur, which probably will lead to a fast outflow of
water at the backfill front.

8.4.3 Temporary drainage

In addition to geotextile, and to further delay the inflowing water from reaching the backfill front, it
is possible to use a temporary removable drainage pipe. The suggested method includes geotextile to
allow for short-term drainage of inflow water. The pipe is temporarily attached to the geotextile since
it is necessary to remove it after use. This means that there is a limit of the maximum pipe length. If
the pipe is too long, the force required to pull it out will be too high for the approach to be practical.

Capacity

The technique to use a temporary drainage is assessed to be suitable for inflow rates between 0.5 and
1.0 L/min. If there e.g. are a number of sections after each other with inflow rates between 0.25 and
1.0 L/min, it could be necessary to use a temporary drainage in order to achieve extra time for the
backfill installation and to avoid water outflow at the front.

8.4.4 Water Storage Section, WSS

In tunnel sections where the inflow rates are rather high, between 1 and 5 L/min, the technique to
store water in the pellet filling between rock walls and block stack will not be enough to avoid water
outflow at the front. The design idea with WSS is that a section of a tunnel will be used to store
water flowing mainly from a fractured zone/point inflow but also from the already inner backfilled
part of the tunnel. The storage is achieved by building a pellet filled section, delimited by two
concrete beam walls, that contains a large volume of empty pores that can hold the inflowing water
and stop it from flowing into the downstream backfill. The storing capacity must be large enough so
that the water flow into the outer part of the deposition tunnel will be delayed so that the backfilling
of the rest of the tunnel can be done without water penetrating to the backfilling front.

Installation of a WSS will result in a transition zone in the backfill (on both sides of the water
collector section) with lower backfill density than the average installed density. It is assumed that
there shall be a smallest allowed distance between a deposition hole and the transition zone of one
meter. The minimum distance of 1 m is rather arbitrarily chosen and may be changed. Since the
position and length of a WSS can be decided before drilling the deposition holes, this requirement
will not result in that already drilled deposition holes have to be abandoned.
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Capacity

Building of a water storage section is assessed to be suitable for inflow rates between 1.0 and

5.0 L/min. The storing capacity can be set by adjusting the length of the dedicated section and by that
also the installed pellet volume. For higher inflow rates than 5 L/min, it is assessed that the length of
the pellet filled section will represent a too large part of the deposition tunnel.

8.4.5 Drainage hole to Adjacent Tunnel

A technique assessed to have high potential in order to handle high water inflows is to drill a bore-
hole from a water bearing fracture zone in a deposition tunnel to an adjacent tunnel. The main idea

is to collect the water from a water bearing fracture zone in a special water collector section and then
drain it to an adjacent tunnel through a borehole until the backfilling of the current deposition tunnel is
complete, and thereafter seal the borehole.

The principle for the new design of a water collector (the design has been changed due to comments
from post closure safety experts, see Chapter 7) is that at the position of a water bearing fracture, which
is crossing a deposition tunnel, a slot is cut out from the rock to a depth of approximately 0.2 meters, all
around the tunnel periphery. The slot is then covered with a thin steel plate which is bolted to the rock.
The space between the steel plate and the rock is filled with gravel that are serving as a filter, leading
all inflowing water to the drainage borehole which is drilled from the bottom of the slot to an adjacent
tunnel. The installation of this type of water collector can be made in advance which means that the
backfill installation process can continue without any stop for construction. The design is assessed to
function well for all fractures crossing the deposition tunnel close to perpendicular. However, if a gently
dripping fracture zone is crossing the deposition tunnel the installation will be more difficult.

Capacity

According to the present limitations for the project the maximum inflow rate is 10 L/min but it
is assessed that this water handling technique can handle also considerably larger inflow rates if
necessary.

8.4.6 Artificially wetted pellet wall

By adding water on the installed pellets it is possible to build up a wet pellet wall. Water flowing from
the inside of the pellet-filling towards the front hits the wetted pellet wall which is much tighter (more
dense) than the rest of the pellet-filling and the water will therefore turn back into the dry parts of the
filling. The method has been tested in laboratory scale and also in the large scale steel tunnel tests

at Aspo. With this method a larger part of the pellet-filling can be used for water storing. Ultimately
water will move beyond the wetted wall, but the backfilling would have progressed substantially
further down the tunnel by that time.

The method is not fully developed and it has been assessed that further tests will be needed before it is
ready for implementation in full scale tests.

Capacity

The capacity of this method is not known but it is assessed that it can be used together with geotextile
as an improvement. The method will probably not be useful for inflow rates higher than 1 L/min.

8.4.7 Local freezing

The objective of the work performed within this project was to evaluate the feasibility of using “Local
Freezing” to control groundwater inflows during backfill operations in hard crystalline rock. Ground
freezing is a well-known technique but there is no proper information available of the use of it in

hard good quality rock. The conceptual idea is to freeze the rock around the excavated tunnel to stop
the water inflow. The method is commonly used in civil engineering when building in sand or other
loose wet soils where freezing has been used to control groundwater (e.g. in shafts), to mechanically
stabilize soils so that the reinforcement can be carried out safely and to enable tunneling through
mixed ground.
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A workshop has been held with a number of experts in the field. It was concluded that the method
has great potential to stop or reduce water inflow but investigations and tests will be necessary.

Capacity
The capacity of this method is not known.

8.5 Light fortified concrete plug

In addition to the developed water handling methods, a suggestion for design of a plug has been
made. The plug is intended to be used in case of a temporary stop in the backfill installation process
e.g. depending on technical problems with the robot or other repository related stoppages. The design
idea is to build a rather simple plug in short time that can withstand a swelling pressure build-up from
the backfill behind it. The design consists of a concrete beam wall that can be reinforced by either a
steel construction or a shotcrete plug if it is judged to be necessary. The design includes that a pellet
filling is installed between the block stack and the wall. This pellet gap has an important role to delay
the swelling pressure build-up from the backfill blocks on the wall. The design includes a drainage
section that ensures that no water pressure can be built up inside the plug. The plug has been
designed to withstand a maximum swelling pressure from the backfill of at least 1 MPa.

8.6 Development of a mathematical model of water storage and
spreading

A mathematical model was developed with the objective to calculate the available time for specific
deposition tunnels and for specific water inflow scenarios, and to analyze if there is a risk that inflow-
ing water can catch up with the backfill front. The water transport was represented as progressing
water fronts from multiple water inlets in a tunnel, for essentially any combination of inlet positions
and flow rates. The partial water-filling of the pellets-filled sections was represented with a flow rate
dependent function, which was adopted from results from steel-tunnel tests. The model was inten-
tionally given a general definition which could enable an evaluation of features which are specific
for SKB and Posiva, respectively, such as tunnel section area and backfilling rate. The model can
be used as a tool when planning the backfill installation process for a specific tunnel.

8.7 Requirements on inflow data

A suggestion for characterization of deposition tunnels regarding water inflow distribution before
starting the backfill installation process has been made. The requirements are based on results from
the investigations and tests performed regarding e.g. water storage capacity of a pellet filling and the
effect of using geotextile to distribute the inflowing water. The requirements may be summarized as
follows:

1. The total water inflow to every deposition tunnel shall be determined. If the total inflow is
<0.5 L/min, no further actions are needed.

2. If the total inflow to a tunnel is between 0.5 and 1.0 L/min, fracture zones/point inflows with
inflow rates >0.5 L/min shall be identified.

3. If the total inflow to a tunnel is > 1.0 L/min, fracture zones/point inflows with inflow rates
>(.25 L/min shall be identified.

The suggested requirements on mapping of inflow data have been discussed with people responsible
for the construction of deposition tunnels within SKB and Posiva and where found to be reasonable.
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8.8 Conclusions
Water handling methods

The main objective with work presented in this report was to develop water handling methods for all
possible water inflow rates that may occur in deposition tunnels during backfill installation. From
the performed investigations on bentonite pellets regarding water storage capacity and the designs of
other water handling methods the following conclusions can be made:

» Bentonite pellet is used for filling of all gaps between the backfill block stack and the rock
walls. According to present modelling results regarding expected inflow rates in Forsmark and
Olkiluoto, the storage of inflowing water in the pellet filling will be enough for the main part
of the deposition tunnels. Water storage in the pellet filling is recommended for inflow rates in
one fracture zone/point inflow <0.5 L/min and a total inflow to the tunnel of between 0.5 and
1.0 L/min. If there are a number of inflow points with inflow rates <0.25 L/min the total inflow
to the tunnel can be between 1 and 5 L/min.

» By using geotextile to distribute the inflowing water over a larger area, the water storage capacity
of a pellet filling can be considerably increased. This is a rather simple method that is recom-
mended to be used in fracture zones/point inflows with inflow rates between 0.25 and 1.0 L/min.
It is recommended to also install an artificially wetted pellet wall after a section with geotextile.
This method has been included in the steel tunnel test and has also influenced the results. If
adding a temporary drainage, connected to the geotextile, the progress of the water front in
the pellet filling can be further delayed. Temporary drainage is recommended for inflow rates
between 0.5 and 1.0 L/min.

+ In fracture zones/point inflows with inflow rates between 1.0 and 5.0 L/min, it is possible to
construct a pellet filled section, delimited by two concrete beam walls. This section is planned to
be used to store the inflowing water during the continued backfill installation and by that prevent
water from reaching the backfill front.

* In fracture zones/point inflows with inflow rates between 5 and 10 L/min, it is recommended to
drain the inflowing water to a neighboring tunnel. After having fulfilled the backfilling of the
current tunnel, the drainage borehole should be sealed. This method can of course also be used
for lower inflow rates and by that e.g. replace WSS.

In addition to the methods described above, it has been discussed to locally freeze the rock around
a water bearing fracture zone and by that stop or reduce the inflow rate. This method has so far only
been investigated by interviews with experts in the field. From the interviews it was concluded that
freezing of hard rock to seal groundwater flow is feasible but it will be necessary to investigate the
method further, both theoretically (modelling) and by performing tests.

Light fortified concrete plug

It is judged that it will be possible to construct a temporary plug in relatively short term in case of

a temporary stop in the backfill installation process. However, this assumes that you have prepared
by having all necessary equipment in storage. The suggested plug has been designed to withstand a
maximum swelling pressure from the backfill of at least 1 MPa. Reaching this pressure will, accord-
ing to the presented modelling results, take between 150 days and one year (depends on the access to
water from the rock at the actual position in the tunnel.

Conceptual model

Another objective with the project was to update the conceptual model, describing how water is
stored in a pellet filling depending on inflow rates and pellet properties. The results from the new
test series, performed within this project, have been used together with a review of results from
carlier tests performed within other projects. The water storage behavior in a pellet filling is mainly
depending on the water inflow rate, the pellet properties and if fines are present in the filling. As an
important outcome from the investigations, the two following recommendations have been made:
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» The presence of fines in a pellet filling depends on if it is present already in the delivered batch
or if it is created during installation. To be sure that one gets such a functional pellet filling as
possible, it is recommended that all pellets manufactured should be sieved before installation. It
is also recommended that the pellet installation equipment (blower, conveyor etc.), should be set
so that as little fines as possible are created during installation.

* In earlier performed test with Asha an Cebogel QSE pellets, where the water storage properties
have been assessed to be high, the water content have been between 12 and 20 % and the dry
density of the individual pellets has been between 1810-2000 kg/m’, see e.g. Dixon et al. 2008a,
b) and Andersson and Sandén (2012). These figures should serve as a guideline for the require-
ments on the pellet properties.

Mathematical model

A mathematical model was developed with the objective to calculate the available time for specific
deposition tunnels and for specific water inflow scenarios, and to analyze if there is a risk that
inflowing water can catch up with the backfill front. The model can be used as a tool when planning
the backfill installation process for a specific tunnel.
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A CO-OPERATION REPORT BETWEEN SVENSK KARNBRANSLEHANTERING AB AND POSIVA OY

SKB's and Posiva's programmes both aim at the disposal of spent nuclear fuel based on the KBS-3 concept. Formal cooperation between the companies
has been in effect since 2001. In 2014 the companies agreed on extended cooperation where SKB and Posiva share the vision “Operating optimised
facilities in 2030". To further enhance the cooperation, Posiva and SKB started a series of joint reports in 2016, which includes this report.
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